Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:19:32.919Z Has data issue: false hasContentIssue false

Structure, mechanical, and tribological properties of titanium implanted alumina

Published online by Cambridge University Press:  29 June 2016

S. M. M. Ramos
Affiliation:
Université Claude Bernard Lyon I, Département Physique des Matériaux, URA CNRS 172, Campus de la Doua, 43 boulevard du 11 Novembre 1918, 69622 Vdleurbanne Cedex, France
B. Canut
Affiliation:
Université Claude Bernard Lyon I, Département Physique des Matériaux, URA CNRS 172, Campus de la Doua, 43 boulevard du 11 Novembre 1918, 69622 Vdleurbanne Cedex, France
L. Gea
Affiliation:
Université Claude Bernard Lyon I, Département Physique des Matériaux, URA CNRS 172, Campus de la Doua, 43 boulevard du 11 Novembre 1918, 69622 Vdleurbanne Cedex, France
P. Thevenard
Affiliation:
Université Claude Bernard Lyon I, Département Physique des Matériaux, URA CNRS 172, Campus de la Doua, 43 boulevard du 11 Novembre 1918, 69622 Vdleurbanne Cedex, France
M. Bauer
Affiliation:
Ecole Centrale de Lyon, Laboratoire de Technologie des Surfaces, URA CNRS 855, 36 avenue Guy de Collongue, B.P. 163, 69131 Ecully Cedex, France
Y. Maheo
Affiliation:
Ecole Centrale de Lyon, Laboratoire de Technologie des Surfaces, URA CNRS 855, 36 avenue Guy de Collongue, B.P. 163, 69131 Ecully Cedex, France
Ph. Kapsa
Affiliation:
Ecole Centrale de Lyon, Laboratoire de Technologie des Surfaces, URA CNRS 855, 36 avenue Guy de Collongue, B.P. 163, 69131 Ecully Cedex, France
J. L. Loubet
Affiliation:
Ecole Centrale de Lyon, Laboratoire de Technologie des Surfaces, URA CNRS 855, 36 avenue Guy de Collongue, B.P. 163, 69131 Ecully Cedex, France
Get access

Abstract

A study of the effects of titanium ion implantation on the structural, mechanical, and tribological properties of single crystal and polycrystalline α-alumina has been carried out. Rutherford Backscattering Spectrometry (RBS) in channeling geometry shows that a great proportion of implanted titanium ions are substitutional at low fluence. This fraction falls to near zero as an amorphous layer is formed. The chemical states for implanted titanium are determined by X-ray Photoelectron Spectroscopy (XPS). Titanium is present in the Ti3+ state near the surface and as metallic Ti0 and as Ti3+ at depths corresponding to higher local concentration of titanium. The same behavior is observed for polycrystalline and single crystal α–alumina. Nanoindentation experiments show that low fluence implantation of titanium results in an increase of mechanical properties whereas high fluence implanted samples exhibit reduced hardness and Young's modulus compared to unimplanted samples. The friction coefficient is not changed by titanium ion implantation. Likewise, the wear characteristics were not changed by low fluence implantation, but amorphization at high fluence leads to a greater disk wear rate.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.McHargue, C. J., Structure Property Relationships in Surface Modified Ceramics, NATO ASI Series, edited by McHargue, C. J., Kossowsky, R., and Hofer, W. O. (Kluwer, London, 1989), p. 253.Google Scholar
2.McHargue, C.J., Nucl. Instrum. Methods in Phys. Res. B 19/20, 787 (1987).Google Scholar
3.McHargue, C.J., Farlow, C.G., White, C.W., Appleton, B.R., Williams, J. M., Sklad, P. S., and Angelini, P., Application of Ion Plating and Ion Implantation to Materials, edited by Hochman, R. (American Society for Metals, Metals Park, OH, 1986), p. 255.Google Scholar
4.McHargue, C.J., Farlow, C.G., White, C.W., Williams, J.M., Angelini, P., and Bergun, G. M., Mater. Sci. Eng. 69, 123 (1985).Google Scholar
5.Hioki, T., Itoh, A., Noda, S., Doi, H., Kawamoto, J., and Kamiagaito, O., Nucl. Instrum. Methods in Phys. Res. B 7/8, 521 (1985).Google Scholar
6.Hioki, T., Itoh, A., Noda, S., Doi, H., Kawamoto, J., and Kamiagaito, O., J. Mater. Sci. 21, 1321 (1986).Google Scholar
7.Hioki, T., Itoh, A., Ohkubo, M., Noda, S., Doi, H., and Kawamoto, J., Structure Property Relationships in Surface Modified Ceramics, NATO ASI Series, edited by McHargue, C. J., Kossowsky, R., and Hofer, W. O. (Kluwer, London, 1989), p. 303.Google Scholar
8.Burnett, P.J. and Page, T.F., J. Mater. Sci. 19, 845 (1984).Google Scholar
9.Burnett, P. J. and Page, T. F., Plastic Deformation of Ceramic Materials, edited by Bradt, R. C. and Tressler, R. E. (Plenum Press, New York, 1984), p. 669.Google Scholar
10.Bull, S.J., “The Mechanical and Tribological Properties of Ion Implanted Ceramics”, Thesis, University of Cambridge, 1987.Google Scholar
11.Loubet, J. L., Bauer, M., Tonck, A., and Kapsa, Ph., to be published.Google Scholar
12.Kapsa, Ph., Bauer, M., and Mazuyer, D., Proc. Int. Tribology Conference, edited by the Japanese Society of Tribologists, Nagoya, Japan, November 1990.Google Scholar
13.Romana, L., Thevenard, P., Canut, B., Massouras, G., Brenier, R., and Brunei, M., Nucl. Instrum. Methods B46, 94 (1990).Google Scholar
14.Ziegler, J. F., Biersack, J. P., and Littmark, U., Stopping Power and Ranges of Ions in Matter (Pergamon Press, Oxford, 1985), Vol. 1.Google Scholar
15.Ramos, S. M. M., Canut, B., Gea, L., Romana, L., Brusq, J. C., Thevenard, P., and Brunel, M., Nucl. Instrum. Methods in Phys. Res. (in press).Google Scholar
16.White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mater. Sci. Rep. 4, 41 (1989).Google Scholar
17.Oliver, W.C., McHargue, C.J., Farlow, G.C., and White, C.W., Rad. Eff. 25, 112 (1975).Google Scholar
18.Chiang, S. S., “Response of Solids to Elastic-Plastic Indentation and the Application to Adhesion Measurements”, Ph.D. Thesis, Lawrence Berkeley, Lab., CA (1981).Google Scholar
19.Johnson, K.L., J. Mech. Phys. Solids 18, 115126 (1970).Google Scholar
20.Czichos, H., Becker, S., and Lexow, J., Wear 135, 171191 (1989).Google Scholar
21.Sasaki, S., Journal of J.S.L.E. 10, 2126 (1989).Google Scholar
22.Wallbridge, N., Dowson, D., and Roberts, E. W., Proc. Int. Conf. on Wear of Materials, edited by Ludema, K. C., Reston, VA, 04 1983.Google Scholar
23.Tonck, A., Kapsa, Ph., and Sabot, J., ASME Trans., Journal of Tribology 108, 117122 (1986).Google Scholar