Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T09:20:55.894Z Has data issue: false hasContentIssue false

Structure and properties of carbon nitride films synthesized by low energy ion bombardment

Published online by Cambridge University Press:  31 January 2011

Xiao-Ming He
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
Li Shu
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
Wen-Zhi Li
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
Heng-De Li
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
Get access

Abstract

Carbon nitride films have been synthesized at low substrate temperature by Ar+ sputtering a graphite target with concurrent N+ assisted bombardment. It was disclosed that N+ bombardment with low energies of 150–400 eV and beam densities of 0.16–0.23 mA cm−2 was favorable to grow carbon nitride films with high N/C atomic composition ratios of 0.47–0.56. The spectra of x-ray photoelectron spectroscopy and infrared spectroscopy show that the low energy N+ bombardment activates nitrogen atoms to combine carbon atoms in unpolarized covalent bonds. Under the 150–300 eV and 0.16–0.23 mA cm−2 N+ assisted bombardment, the formed films are identified by transmission electron microscopy to possess the β–C3N4 microcrystalline structure. The films exhibit an extremely high hardness of 5260 kgf/mm2, a high resistivity of 4.8 × 1012 Ω × cm, and excellent optical transmittance. Friction and wear tests show that carbon nitride films on steel substrate can perform the even wear in low friction coefficients of 0.05–0.16 while raising wear loads up to 20 N.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).CrossRefGoogle Scholar
2.Liu, A. Y. and Cohen, M. L., Phys. Rev. B 41, 10 727 (1990).CrossRefGoogle Scholar
3.Corkill, J. L. and Cohen, M. L., Phys. Rev. B 48, 17 622 (1993).CrossRefGoogle Scholar
4.Toring, C. J., Sivertson, J. M., Judy, J. H., and Chang, C.. J. Mater. Res. 5, 2490 (1990).CrossRefGoogle Scholar
5.Matsumoto, O., Kotaki, T., Shikano, H., Takemura, K., and Tanaka, S., J. Electrochem. Soc. 141, L16 (1994).CrossRefGoogle Scholar
6.Kreider, K. G., Tarlov, M. J., Gillen, G. J., Poirier, G. E., Robins, L. H., Ives, L. K., Bowers, W. D., Marinenko, R. B., and Smith, D. T., J. Mater. Res. 10, 3079 (1995).CrossRefGoogle Scholar
7.Chen, M. Y., Lin, X., Dravid, V. P., Chung, Y. W., Wong, M. S., and Sproul, W. D., Surf. Coat. Technol. 54/55, 360 (1992).CrossRefGoogle Scholar
8.Yu, K. M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A. M., and Wu, I. C., Phys. Rev. B 49 (7), 5034 (1994).CrossRefGoogle Scholar
9.Hoffman, A., Gouzman, I., and Brener, R., Appl. Phys. Lett. 64, 847 (1994).CrossRefGoogle Scholar
10.Withrow, S. P., Williams, J. M., Prawer, S., and Barbara, D., J. Appl. Phys. 78 (5), 3060 (1995).CrossRefGoogle Scholar
11.Regalado, A., Science 267, 1089 (1995).CrossRefGoogle Scholar
12.Niu, C., Lu, Y. Z., and Lieber, C. M., Science 261, 334 (1993).CrossRefGoogle Scholar
13.He, X. M., Song, H. W., Li, W. Z., Cui, F. Z., and Li, H. D., in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R. J., Holland, O. W., Jones, K. S., and Maex, K. (Mater. Res. Soc. Symp. Proc. 316, Pittsburgh, PA, 1994), p. 923.Google Scholar
14.Song, H. W., Cui, F. Z., He, X. M., Li, W. Z., and Li, H. D., J. Phys: Condens. Matter 6, 6125 (1994).Google Scholar
15.Ogata, K., Chubaci, J. F. D., and Fujimoto, F., J. Appl. Phys. 76, 3791 (1994).CrossRefGoogle Scholar
16.He, X. M., Li, W. Z., and Li, H. D., Chinese Sci. Bull. 40 (20), 1752 (1995).Google Scholar
17.Marton, D., Boyd, K. J., Al-Bayati, A. H., Todorow, S. S., and Rabalais, J. W., Phys. Rev. Lett. 73, 118 (1994).CrossRefGoogle Scholar
18.He, X. M., Li, W. Z., and Li, H. D., J. Vac. Sci. Technol. A 14 (4), 5280 (1996).Google Scholar
19.Liu, A. Y. and Wentzcovitch, R. M., Phys. Rev. B 50, 10 362 (1994).Google Scholar
20.He, X. M., Li, W. Z., and Li, H. D., J. Vac. Sci. Technol. A 11 (6), 2964 (1993).CrossRefGoogle Scholar
21.Ricci, M., Trinquecoste, M., Auguste, F., Canet, R., Delhaès, P., Guimon, C., Pfister-Guilouzo, G., Nysten, B., and Issi, J. P., J. Mater. Res. 8, 480 (1993).CrossRefGoogle Scholar
22.Kouvetakis, J., Bandari, A., Todd, M., Wilkens, B., and Cave, N., Chem. Mater. 6, 811 (1994).CrossRefGoogle Scholar
23.Krishna, M. Ghanashyam, Gunasekhar, K. R., and Mohan, S., J. Mater. Res. 10, 1083 (1995).CrossRefGoogle Scholar
24.Rossi, F., André, B., Veen, A. V., Mijnarends, P. E., Schut, H., Labohm, F., Dunlop, H., Delplancke, M. P., and Hubbard, K., J. Mater. Res. 9, 2440 (1994).CrossRefGoogle Scholar
25.He, X-M., Li, W-Z., and Li, H-D., J. Mater. Res. 9, 2355 (1994).CrossRefGoogle Scholar
26.Li, W-Z., He, X-M., and Li, H-D., J. Appl. Phys. 75 (4), 2002 (1994).CrossRefGoogle Scholar