Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T20:42:44.037Z Has data issue: false hasContentIssue false

Structure and mechanical properties of epitaxial TiN/V0.3Nb0.7N(100) superlattices

Published online by Cambridge University Press:  03 March 2011

P.B. Mirkarimi
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
S.A. Barnett
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
K.M. Hubbard
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T.R. Jervis
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
L. Hultman
Affiliation:
Department of Physics, Linköping University, S-581 83 Linköping, Sweden
Get access

Abstract

Epitaxial TiN/V0.3Nb0.7N superlattices with a 1.7% lattice mismatch between the layers were grown by reactive magnetron sputtering on MgO(001) substrates. Superlattice structure, crystalline perfection, composition modulation amplitudes, and coherency strains were studied using transmission electron microscopy and x-ray diffraction. Hardness H and elastic modulus were measured by nanoindentation. H increased rapidly with increasing Λ, peaking at H values ≍75% greater than rule-of-mixtures values at Λ ≍ 6 nm, before decreasing slightly with further increases in Λ. A comparison with previously studied lattice-matched TiN/V0.6Nb0.4N superlattices, which had nearly identical composition modulation amplitudes, showed a similar H variation, but a smaller H enhancement of ≍50%. The results suggest that coherency strains, which were larger for the mismatched TiN/V0.3Nb0.7N superlattices, were responsible for the larger hardness enhancement. The results are discussed in terms of coherency strain theories developed for spinodally decomposed materials. Nanoindenter elastic modulus results showed no significant anomalies.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Helmersson, U., Todorova, S., Barnett, S. A., Sundgren, J. E., Markert, L. C., and Greene, J. E., J. Appl. Phys. 62, 481 (1987).CrossRefGoogle Scholar
2Mirkarimi, P. B., Hultman, L., and Barnett, S. A., Appl. Phys. Lett. 57, 2654 (1990).CrossRefGoogle Scholar
3Hubbard, K. M., Jervis, T. R., Mirkarimi, P. B., and Barnett, S. A., J. Appl. Phys. 72, 4466 (1992).CrossRefGoogle Scholar
4Shinn, M., Hultman, L., and Barnett, S. A., J. Mater. Res. 7, 901 (1992).CrossRefGoogle Scholar
5Chu, X., Wong, M. S., Sproul, W. D., Rohde, S. L., and Barnett, S. A., J. Vac. Sci. Technol. A 10, 1604 (1992).CrossRefGoogle Scholar
6Niemi, E., Korhonen, A. S., Hariju, E., and Kauppinen, V., J. Vac. Sci. Technol. A 4, 2763 (1986).CrossRefGoogle Scholar
7Randhawa, H., J. Vac. Sci. Technol. A 4, 2755 (1986).CrossRefGoogle Scholar
8Benesovsky, F., Kieffer, R., and Ettmayer, P., in Encyclopedia of Chemical Technology, 3rd ed. (John Wiley, New York, 1981), Vol. 15.Google Scholar
9Toth, L. E., Transition Metal Nitrides and Carbides (Academic Press, New York, 1971).Google Scholar
10Koehler, J. C., Phys. Rev. B 2, 547 (1970).CrossRefGoogle Scholar
11Lehoczky, S. L., Phys. Rev. Lett. 41, 1814 (1978).CrossRefGoogle Scholar
12Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
13Guinier, A., X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Freeman, San Francisco, CA, 1963).Google Scholar
14McWhan, D. B., in Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic Press, New York, 1985), Chap. 2.Google Scholar
15Mirkarimi, P. B., Shinn, M., and Barnett, S. A., J. Vac. Sci. Technol. A 10, 75 (1992).CrossRefGoogle Scholar
16Cullity, B. D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978).Google Scholar
17Hultman, L., Wallenberg, L. R., Shinn, M., and Barnett, S. A., J. Vac. Sci. Technol. A 10, 618 (1992).CrossRefGoogle Scholar
18Henein, G. E. and Hilliard, J. E., J. Appl. Phys. 54, 728 (1983).CrossRefGoogle Scholar
19Kim, J. O., Achenbach, J. D., Mirkarimi, P. B., Shinn, M., and Barnett, S. A., J. Appl. Phys. 72, 1805 (1992).CrossRefGoogle Scholar
20Gyorgy, E. M., McWhan, D. B., Dillon, J. F. Jr., Walker, L. R., and Waszczak, J. V., Phys. Rev. B 25, 6739 (1982).Google Scholar
21Davis, B., Ph.D. Thesis, Northwestern University, Evanston, IL (1990).Google Scholar
22Birch, J., Yamamoto, Y., Hultman, L., Radnoczi, G., Sundgren, J-E., and Wallenberg, L. R., Vacuum 41, 1231 (1990).CrossRefGoogle Scholar
23Speriosu, V. S. and Vreeland, T. Jr., J. Appl. Phys. 56, 1591 (1984).CrossRefGoogle Scholar
24Chrzan, D. and Dutta, P., J. Appl. Phys. 59, 1504 (1986).CrossRefGoogle Scholar
25Mirkarimi, P. B. and Barnett, S. A. (unpublished).Google Scholar
26Henein, G. E., Ph.D. Thesis, Northwestern University, Evanston, IL (1979).Google Scholar
27Gealer, C. A., M. S. Thesis, Northwestern University, Evanston, IL (1986).Google Scholar
28Mirkarimi, P. B., Ph.D. Thesis, Northwestern University, Evanston, IL (1993).Google Scholar
29Davis, B. M., Li, D. X., Seidman, D. N., Ketterson, J. B., Bhadra, R., and Grimsditch, M., J. Mater. Res. 7, 1356 (1992).CrossRefGoogle Scholar
30Tsakalakos, T., Ph.D. Thesis, Northwestern University, Evanston, IL (1977).Google Scholar
31Mattson, J., Bhadra, R., Ketterson, J. B., Brodsky, M., and Grimsditch, M., J. Appl. Phys. 67, 2873 (1990).CrossRefGoogle Scholar
32Torok, E., Perry, A. J., Chollet, L., and Sproul, W. D., Thin Solid Films 153, 37 (1987).CrossRefGoogle Scholar
33Perry, A. J., Thin Solid Films 193/194, 463 (1990).CrossRefGoogle Scholar
34Jiang, X., Wang, M., Schmidt, K., Dunlop, E., Haupt, J., and Gissler, W., J. Appl. Phys. 69, 3053 (1991).CrossRefGoogle Scholar
35Hultman, L., Shinn, M., Mirkarimi, P. B., and Barnett, S. A., J. Cryst. Growth 135, 309 (1994).CrossRefGoogle Scholar
36Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
37Mirkarimi, P. B., Shinn, M., Barnett, S. A., Kumar, S., and Grimsditch, M., J. Appl. Phys. 71, 4955 (1992).CrossRefGoogle Scholar
38Krzanowski, J. E., Scripta Met. et Mater. 25, 1465 (1991).Google Scholar
39Shinn, M. and Bamett, S. A., Appl. Phys. Lett. 64, 61 (1994).CrossRefGoogle Scholar
40Pacheco, E. S. and Mura, T., J. Mech. Phys. Solids 17, 163 (1969).CrossRefGoogle Scholar
41Holleck, H., J. Vac. Sci. Technol. A 4, 2661 (1986).CrossRefGoogle Scholar
42Nembach, E. and Neite, G., Prog. Mater. Sci. 29, 177 (1985).CrossRefGoogle Scholar
43Cahn, J. W., Acta Metall. 11, 1274 (1963).CrossRefGoogle Scholar
44Kato, M., Mori, T., and Schwartz, L. H., Acta Metall. 28, 285 (1980).Google Scholar
45Ditchek, B. and Schwartz, L. H., Annu. Rev. Mater. Sci. 9, 219 (1979).Google Scholar
46Tabor, D., J. Inst. Metals 79, 1 (1951).Google Scholar