Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T01:03:51.981Z Has data issue: false hasContentIssue false

Structure and composition in the superconductive Bi–Sr–Ca–Cu–O system

Published online by Cambridge University Press:  31 January 2011

A. H. Carim
Affiliation:
Philips Research Laboratories, P. O. Box 80.000, 5600 JA Eindhoven, The Netherlands
A. P. M. Kentgens
Affiliation:
Philips Research Laboratories, P. O. Box 80.000, 5600 JA Eindhoven, The Netherlands
J. H. T. Hengst
Affiliation:
Philips Research Laboratories, P. O. Box 80.000, 5600 JA Eindhoven, The Netherlands
D. M. de Leeuw
Affiliation:
Philips Research Laboratories, P. O. Box 80.000, 5600 JA Eindhoven, The Netherlands
C. A. H. A. Mutsaers
Affiliation:
Philips Research Laboratories, P. O. Box 80.000, 5600 JA Eindhoven, The Netherlands
Get access

Abstract

Characterization of superconducting Bi–Sr–Ca–Cu oxides has been carried out by electrical measurements, x-ray diffraction, conventional and high-resolution electron microscopy, and electron microprobe analysis. Nominal starting compositions with cation ratios of 1:1:1:2 and 2:2:1:2 show considerably different superconducting behavior. In both cases multiphase materials are formed. The predominant superconducting phase occurs as thin platelets with an orthorhombic, modulated structure. These particles often have edges aligned along [110], [100], and [010] directions and contain subgrain boundaries. Electron diffraction patterns and high-resolution micrographs taken along several zone axes are consistent with an incommensurate centered modulation along the b axis with a magnitude of 4.7 ± 0.1 times b. Unexpectedly, two distinct chemical compositions were found in platelets with the same apparent structure: Bi4Sr3Ca3Cu4O16±δ for the lower Tc phase in the 1:1:1:2 material, and Bi2Sr2CaCu2O8±δ for the isomorphic higher Tc phase present in the 2:2:1:2 samples.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
2Chu, C. W., Bechtold, J., Gao, L., Hor, P. H., Huang, Z. J., Meng, R. L., Sun, Y. Y., Wang, Y. Q., and Xue, Y. Y., Phys. Rev. Lett. 60, 941 (1988).CrossRefGoogle Scholar
3Subramanian, M. A., Torardi, C. C., Calabrese, J. C., Gopalakrishnan, J., Morrissey, K. J., Askew, T. R., Flippen, R. B., Chowdhry, U., and Sleight, A. W., Science 239, 1015 (1988).CrossRefGoogle Scholar
4Politis, C., Appl. Phys. A 45, 261 (1988).CrossRefGoogle Scholar
5See also Proceedings of the Interlaken Meeting, Physica C 153-155 (1988).Google Scholar
6Tarascon, J. M., Page, Y. Le, Barboux, P., Bagley, B. G., Greene, L. H., McKinnon, W. R., Hull, G. W., Giroud, M., and Hwang, D. M., Phys. Rev. B 37, 9382 (1988).CrossRefGoogle Scholar
7Tallon, J. L., Buckley, R. G., Gilberd, P. W., Presland, M. R., Brown, I. W. M., Bowden, M. E., Christian, L. A., and Goguel, R., Nature 333, 153 (1988).CrossRefGoogle Scholar
8Viegers, M. P. A., Leeuw, D. M. de, Mutsaers, C. A. H. A., Hal, H. A. M. van, Smoorenburg, H. C. A., Hengst, J. H. T., Vries, J. W. C. de, and Zalm, P. C., J. Mater. Res. 2, 743 (1987).CrossRefGoogle Scholar
9Available from Agar Aids Ltd., 66a Cambridge Road, Stansted, Essex CM24 8DA, United Kingdom.Google Scholar
10Hazen, R. M., Prewitt, C. T., Angel, R. J., Ross, N. L., Finger, L. W., Hadidiacos, C. G., Veblen, D. R., Heaney, P. J., Hor, P. H., Meng, R. L., Sun, Y. Y., Wang, Y. Q., Xue, Y. Y., Huang, Z. J., Gao, L., Bechtold, J., and Chu, C. W., Phys. Rev. Lett. 60, 1174 (1988).CrossRefGoogle Scholar
11Sunshine, S. A., Siegrist, T., Schneemeyer, L. F., Murphy, D. W., Cava, R. J., Batlogg, B., Dover, R. B. van, Fleming, R. M., Glarum, S. H., Nakahara, S., Farrow, R., Krajewski, J. J., Zahurak, S. M., Waszczak, J. V., Marshall, J. H., Marsh, P., Rupp, L. W. Jr , and Peck, W. F., Phys. Rev. B 38, 893 (1988).CrossRefGoogle Scholar
12Wolff, P. M. de, Janssen, T., and Janner, A., Acta Cryst. A 37, 625 (1981).CrossRefGoogle Scholar
13Wolff, P. M. de, Acta Cryst. A 30, 777 (1974).CrossRefGoogle Scholar
14Janner, A. and Janssen, T., Phys. Rev. B 15, 643 (1977).CrossRefGoogle Scholar
15Matsui, Y., Maeda, H., Tanaka, Y., and Horiuchi, S., Jpn. J. Appl. Phys. 27, L 372 (1988).CrossRefGoogle Scholar
16Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T., Togano, K., Kumakura, H., Uehara, M., Ikeda, S., Ogawa, K., Horiuchi, S., and Matsui, Y., in Ref. 5, p. 602.Google Scholar
17Hewat, E. A., Bordet, P., Capponi, J. J., Chaillout, C., Hodeau, J. L., and Marezio, M., in Ref. 5, p. 619.Google Scholar
18Shaw, T. M., Shivashankar, S. A., Placa, S. J. La, Cuomo, J. J., McGuire, T. R., Roy, R. A., Kelleher, K. H., and Yee, D. S., Phys. Rev. B 37, 9856 (1988).CrossRefGoogle Scholar
19Veblen, D. R., Heaney, P. J., Angel, R. J., Finger, L. W., Hazen, R. M., Prewitt, C. T., Ross, N. L., Chu, C. W., Hor, P. H., and Meng, R. L., Nature 332, 334 (1988).CrossRefGoogle Scholar