Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T13:24:49.215Z Has data issue: false hasContentIssue false

Structural and optical properties of PA MBE AlGaN quantum well heterostructures grown on c-Al2O3 by using flux- and temperature-modulated techniques

Published online by Cambridge University Press:  13 August 2015

Valentin N. Jmerik*
Affiliation:
Ioffe Institute, Centre of Nanoheterostructure Physics, St. Petersburg 194021, Russia
Dmitrii V. Nechaev
Affiliation:
Ioffe Institute, Centre of Nanoheterostructure Physics, St. Petersburg 194021, Russia
Sergey Rouvimov
Affiliation:
Ioffe Institute, Centre of Nanoheterostructure Physics, St. Petersburg 194021, Russia; and University of Notre Dame, Notre Dame, Indiana 46556, USA
Valentin V. Ratnikov
Affiliation:
Ioffe Institute, Centre of Nanoheterostructure Physics, St. Petersburg 194021, Russia
Peter S. Kop'ev
Affiliation:
Ioffe Institute, Centre of Nanoheterostructure Physics, St. Petersburg 194021, Russia
Mikolai V. Rzheutski
Affiliation:
Stepanov Institute of Physics of NAS Belarus, Minsk 220072, Belarus
Eugenii V. Lutsenko
Affiliation:
Stepanov Institute of Physics of NAS Belarus, Minsk 220072, Belarus
Gennadii P. Yablonskii
Affiliation:
Stepanov Institute of Physics of NAS Belarus, Minsk 220072, Belarus
Maher Aljohenii
Affiliation:
KACST, National Nanotechnology Center, 11442 Riyadh, Saudi Arabia
Abdulaziz Aljerwii
Affiliation:
KACST, National Nanotechnology Center, 11442 Riyadh, Saudi Arabia
Ahmed Alyamani
Affiliation:
KACST, National Nanotechnology Center, 11442 Riyadh, Saudi Arabia
Sergey V. Ivanov
Affiliation:
Ioffe Institute, Centre of Nanoheterostructure Physics, St. Petersburg 194021, Russia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

AlGaN-based quantum well (QW) heterostructures grown by plasma-assisted molecular beam epitaxy on c-Al2O3 substrates have been studied. The high-temperature (785 °C) synthesis of AlN buffer layer nucleated by a migration-enhanced epitaxy and including several ultrathin GaN interlayers was the optimum approach for lowering the threading dislocations density down to 108–109 cm−2. High-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) has revealed the step-like roughness of the AlN/Al2O3 interface. Also, the formation of Al-rich barriers induced by temperature-modulated epitaxy and the spontaneous compositional disordering have been found in the AlxGa1−xN (x > 0.6) barrier layers. The origin of these phenomena and their influence on parameters of the mid-UV stimulated emission observed in the QW heterostructures were discussed. The fine structure of the QWs formed by a submonolayer digital alloying technique has been displayed by HAADF STEM, and optical properties of the QW structures were studied by temperature- and time-dependent photoluminescence spectroscopy.

Type
Reviews
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hirayama, H., Maeda, N., Fujikawa, S., Toyoda, S., and Kamata, N.: Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 53, 100209 (2014).Google Scholar
Nechaev, V., Aseev, P.A., Jmerik, V.N., Brunkov, P.N., Kuznetsova, Y.V., Sitnikova, A.A., Ratnikov, V.V., and Ivanov, S.V.: Control of threading dislocation density at the initial growth stage of AlN on c-sapphire in plasma-assisted MBE. J. Cryst. Growth 378, 319 (2013).Google Scholar
Jmerik, V.N., Mizerov, A.M., Nechaev, D.V., Aseev, P.A., Sitnikova, A.A., Troshkov, S.I., Kop’ev, P.S., and Ivanov, S.V.: Growth of thick AlN epilayers with droplet-free and atomically smooth surface by plasma-assisted molecular beam epitaxy using laser reflectometry monitoring. J. Cryst. Growth 354, 188 (2012).CrossRefGoogle Scholar
Nechaev, D.V., Brunkov, P.N., Troshkov, S.I., Jmerik, V.N., and Ivanov, S.V.: Pulsed growth techniques in plasma-assisted molecular beam epitaxy of AlxGa1−xN layers with medium Al content (x=0.4–0.6). J. Cryst. Growth 425, 9 (2015).Google Scholar
Jmerik, V.N., Shubina, T.V., Mizerov, A.M., Belyaev, K.G., Sakharov, A.V., Zamoryanskaya, M.V., Sitnikova, A.A., Davydov, V.Yu., Kop’ev, P.S., Lutsenko, E.V., Danilchyk, A.V., Rzheutskii, N.V., Yablonskii, G.P., and Ivanov, S.V.: AlGaN quantum well structures for deep-UV LEDs grown by plasma-assisted MBE using sub-monolayer digital-alloying technique. J. Cryst. Growth 311, 2080 (2009).Google Scholar
Jmerik, V.N., Lutsenko, E.V., and Ivanov, S.V.: Plasma-assisted molecular beam epitaxy of AlGaN heterostructures for deep-ultraviolet optically pumped lasers. Phys. Status Solidi A 210, 439 (2013).Google Scholar
Ivanov, S.V., Nechaev, D.V., Sitnikova, A.A., Ratnikov, V.V., Yagovkina, M.A., Rzheutskii, N.V., Lutsenko, E.V., and Jmerik, V.N.: Plasma-assisted molecular beam epitaxy of Al(Ga)N layers and quantum well structures for optically pumped mid-UV lasers on c-Al2O3 . Semicond. Sci. Technol. 29, 084008 (2014).Google Scholar
Li, X.H., Detchprohm, T., Kao, T.T., Satter, Md.M., Shen, S.C., Yoder, P.D., Dupuis, R.D., Wang, S., Wei, Y.O., Xie, H., Fischer, A.M., Ponce, F.A., Wernicke, T., Reich, C., Martens, M., and Kneissl, M.: Low-threshold stimulated emission at 249 nm and 256 nm from AlGaN-based multiple-quantum-well lasers grown on sapphire substrate. Appl. Phys. Lett. 105, 141106 (2014).Google Scholar
Terashima, W. and Hirayama, H.: Molecular beam epitaxy growth of GaN/AlGaN quantum cascade structure using droplet elimination by thermal annealing technique. Phys. Status Solidi A 208, 1187 (2011).Google Scholar
Dunn, C.G. and Koch, E.F.: Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe. Acta Metall. 5, 548 (1957).Google Scholar
Moram, M.A. and Vickers, M.E.: X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72, 036502 (2009).CrossRefGoogle Scholar
Miyagawa, R., Yang, S., Miyake, H., Hiramatsu, K., Kuwahara, T., Mitsuhara, M., and Kuwano, N.: Microstructure of AlN grown on a nucleation layer on a sapphire substrate. Appl. Phys. Express 5, 025501 (2012).Google Scholar
Levi, G. and Kaplan, W.D.: Oxygen induced interfacial phenomena during wetting of alumina by liquid aluminium. Acta Mater. 50, 75 (2002).Google Scholar
Champion, J.A., Keene, B.J., and Silwood, J.M.: Wetting of aluminium oxide by molten aluminium and other metals. J. Mater. Sci. 4, 39 (1969).Google Scholar
Zhou, X.B. and De Hosson, J.T.M.: Wetting kinetics of liquid aluminium on an Al2O3 surface. J. Mater. Sci. 30, 3571 (1995).Google Scholar
Ksiazek, M., Sobczak, N., Mikulowski, B., Radziwill, W., and Surowiak, I.: Wetting and bonding strength in Al/Al2O3 system. Mater. Sci. Eng., A 324, 162 (2002).Google Scholar
Ivanov, S.V., Altukhov, P.D., Argunova, T.S., Bakun, A.A., Boudza, A.A., Chaldyshev, V.V., Kovalenko, Yu.A., Kop'ev, P.S., Kutt, R.N., Meltser, B.Ya., Ruvimov, S.S., Shaposhnikov, S.V., Sorokin, L.M., and Ustinov, V.M.: Molecular beam epitaxy growth and characterization of thin (<2 μm) GaSb layers on GaAs(l00) substrates. Semicond. Sci. Technol. 8, 347 (1993).Google Scholar
Radhavan, S. and Redwing, J.M.: Intrinsic stresses in AlN layers grown by metal organic chemical vapor deposition on (0001) sapphire and (111) Si substrates. J. Appl. Phys. 96, 2995 (2004).Google Scholar
Nix, W.D. and Clemens, B.M.: Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 3647 (1999).Google Scholar
Shevchenko, E.A., Toropov, A.A., Nechaev, D.V., Jmerik, V.N., Shubina, T.V., Ivanov, S.V., Yagovkina, M.A., Pozina, G., Bergman, J.P., and Monemar, B.: AlGaN quantum well heterostructures for mid-ultraviolet emitters with improved room temperature quantum efficiency. Acta Phys. Pol., A 126, 1140 (2014).Google Scholar