Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T05:13:30.307Z Has data issue: false hasContentIssue false

Stress-driven surface evolution in heteroepitaxial thin films: Anisotropy of the two-dimensional roughening mode

Published online by Cambridge University Press:  31 January 2011

Cengiz S. Ozkan
Affiliation:
Process Development Group, Applied Micro Circuits Corporation, San Diego, California 92121
William D. Nix
Affiliation:
Materials Science and Engineering Department, Stanford University, Stanford, California 94305
Huajian Gao
Affiliation:
Mechanical Engineering Department, Stanford University, Stanford, California 94305
Get access

Abstract

We have analyzed the anisotropic behavior of surface roughening in Si1−xGex/Si(001) heterostructures by use of methods of elastic analysis of undulated surfaces and perturbation analysis on the basis of global energy variations associated with surface evolution. Both methods have shown that the two-dimensional stage of surface roughening preferentially takes place in the form of ridges aligned along the two orthogonal 〈100〉 type directions. This prediction has been confirmed by ex situ experimental observations of surface evolution by use of atomic force microscopy and transmission electron microscopy in both subcritically and supercritically thick Si1−xGex films grown on Si(001) substrates. Further experiments in supercritically thick films have revealed a remarkable interplay between defect formation and surface evolution: the formation of a network of 〈110〉?misfit dislocations in the latter stages alters the evolution process by rotating the ridge formations toward the 〈110〉 type directions.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.People, R., Phys. Rev. B 32, 1405 (1985).CrossRefGoogle Scholar
2.Pearsall, T.P., J. Lumines. 44, 367 (1989).CrossRefGoogle Scholar
3.Cressler, J.D., IEEE Spect. March, 49 (1995).CrossRefGoogle Scholar
4.People, R., IEEE J. Quant. Electron. 22, 1696 (1996).CrossRefGoogle Scholar
5.Harame, D.L., Comfort, J.H., Cressler, J.D., Crabbe, E.F., Sun, J.Y., Meyerson, B.S., and Tice, T., IEEE Trans. Electron Devices (Parts I and II) 42, 455 (1995).CrossRefGoogle Scholar
6.Iyer, S.S., Patton, G.L., Stork, J.M.C, Meyerson, B.S., and Harame, D.L., IEEE Trans. Electron Devices 36, 2043 (1989).CrossRefGoogle Scholar
7.Liu, H.C., Landheer, D., Buchanan, M., and Houghton, D.C., Appl. Phys. Lett. 52, 1809 (1988).CrossRefGoogle Scholar
8.Geels, R.S., Corzine, S.W., and Coldren, L.A., J. Quant. Electron. 27, 1359 (1991).CrossRefGoogle Scholar
9.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
10.Matthews, J.W., Epitaxial Growth, Part B, Chapter 8 (1975).Google Scholar
11.Nix, W.D., Metall Trans. 20A, 2217 (1989).CrossRefGoogle Scholar
12.van der Merwe, J.H., J. Electron. Mater. 20, 739 (1991).CrossRefGoogle Scholar
13.Shiflet, G.J. and van der Merwe, J.H., J. Electron. Mater. 20, 785 (1991).CrossRefGoogle Scholar
14.Freund, L.B., MRS Bull. XVII(7), 52 (1992).CrossRefGoogle Scholar
15.Ozkan, C.S., Ph.D. Dissertation, Stanford University (1997).Google Scholar
16.Gillard, V.T., Ph.D. Dissertation, Stanford University (1995).Google Scholar
17.Noble, D.B., Ph.D. Dissertation, Stanford University (1991).Google Scholar
18.LeGoues, F.K., Phys. Rev. Lett. 72, 876 (1994).CrossRefGoogle Scholar
19.Cullis, A.G., Pidduck, A.J., and Emeny, M.T., J. Cryst. Growth 158, 15 (1996).CrossRefGoogle Scholar
20.Cullis, A.G., Pidduck, A.J., and Emeny, M.T., Phys. Rev. Let. 75, 2368 (1995).CrossRefGoogle Scholar
21.Bulsara, M.T., Leitz, C., and Fitzgerald, E.A., Appl. Phys. Lett. 72, 1608 (1998).CrossRefGoogle Scholar
22.Schwartzman, A.F. and Sinclair, R., J. Electron. Mater. 20, 805 (1991).CrossRefGoogle Scholar
23.Hutchins, J.W., Skromme, B.J., Chen, Y.P., and Sivananthan, S., Appl. Phys. Lett. 71, 350 (1997).CrossRefGoogle Scholar
24.Chibani, L., Hage-Ali, M., and Siffert, P., J. Cryst Growth 161, 153 (1996).CrossRefGoogle Scholar
25.Ozkan, C.S., Nix, W.D., and Gao, H., in Structure and Evolution of Surfaces, edited by Cammarata, R.C., Chason, E.H., Einstein, T.L., and Williams, E.D. (Mater. Res. Soc. Symp. Proc. 440, Warrendale, PA, 1997), p. 323.Google Scholar
26.Asaro, R.J., Tiller, W.A., Metall. Trans. 3, 1789 (1972).CrossRefGoogle Scholar
27.Gao, H., J. Mechan. Phys. Solids 39, 443 (1991).CrossRefGoogle Scholar
28.Gao, H., Modern Theory of Anisotropic Elasticity and Applications, edited by Wu, Julian J., Ting, J.C.T., and Barnett, D.M.Society for Industrial and Applied Mathematics, (1991), pp. 139150.Google Scholar
29.Gao, H., J. Mechan. Phys. Solids 42, 741 (1994).CrossRefGoogle Scholar
30.Freund, L.B., Jonsdottir, F., J. Mechan. Phys. Solids 41, 1245 (1993).CrossRefGoogle Scholar
31.Ozkan, C.S., Nix, W.D., and Gao, H., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Warrendale, PA, 1997), p. 487.Google Scholar
32.Chiu, C-H. and Gao, H., in Mechanisms of Thin Film Evolution, edited by Yalisove, S.M., Thompson, C.V., and Eaglesham, D.J. (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 369.Google Scholar
33.Srolovitz, D.J., Acta Metall. 37, 621 (1989).CrossRefGoogle Scholar
34.Chiu, C-H., Gao, H., Int. J. Solids Struct. 30, 2983 (1993).Google Scholar
35.Ozkan, C.S., Nix, W.D., and Gao, H., in Evolution of Epitaxial Structure and Morphology, edited by Zangwill, A., Jesson, D., Chambliss, D., and Clarke, R. (Mater. Res. Soc. Symp. Proc. 399, Pittsburgh, PA, 1996), p. 407.Google Scholar
36.Jesson, D.E., Pennycook, S.J., Baribeau, J.M., and Houghton, D.C., Phys. Rev. Lett 71, 1744 (1993).CrossRefGoogle Scholar
37.Jesson, D.E., Chen, K.M., and Pennycook, S.J., MRS Bull. (21)4, 31 (1996).CrossRefGoogle Scholar
38.Guha, S., Madhukar, A., and Rajkumar, K.C., Appl. Phys. Lett. 57, 2110 (1990).CrossRefGoogle Scholar
39.Dieguez, A., Vila, A., Cornet, A., and Clark, S.A., J. Vac. Sci. Technol. B 15–3, 687 (1997).CrossRefGoogle Scholar
40.Cullis, A.G., MRS Bull. 21(4), 21 (1996).CrossRefGoogle Scholar
41.Perovic, D.D., Houghton, D.C., Noel, J.P., and Rowell, N.L., Microscopy of Semiconducting Materials, SMM VIII, pp. 309312 (1993).Google Scholar
42.Floro, J.A., Chason, E., Twesten, R.D., and Hwang, R.Q., Phys. Rev. Lett. 79, 3946 (1997).CrossRefGoogle Scholar
43.Ozkan, C.S., Nix, W.D., and Gao, H., Appl. Phys. Lett. 70, 2247 (1997).CrossRefGoogle Scholar
44.Floro, J.A., Chason, E., Lee, S.R., and Twesten, R.D., J. Electro. Mater. 26, 969 (1997).CrossRefGoogle Scholar
45.Eaglesham, D.J. and Hull, R., Mater. Sci. Eng. B 30, No. 2–3, 197, (1995).CrossRefGoogle Scholar
46.Strunk, H.P., Albrecht, M., Christiansen, S., and Dorsch, W., in Microscopy of Semiconducting Materials, edited by Cullis, A.G. and Hutchinson, J.L. (Proc. Royal Microscopical Soc. Conf., Bristol, UK, 1997).Google Scholar
47.Samavedam, S.B. and Fitzgerald, E.A., J. Appl. Phys. 81, 3108 (1997).CrossRefGoogle Scholar
48.Ozkan, C.S., Nix, W.D., and Gao, H., in Defects in Electronic Materials II, edited by Michel, J., Kennedy, T., Wada, K., and Thonke, K. (Mater. Res. Soc. Proc. 442, Warrendale, PA, 1997), p. 373.Google Scholar
49.Muellner, P., Gao, H., and Ozkan, C.S., Philos. Mag. A 75, 925 (1997).CrossRefGoogle Scholar
50.Gao, H., Ozkan, C.S., Nix, W.D., Zimmerman, J., and Freund, L.B., Philos. Mag. A 79, 349 (1999).CrossRefGoogle Scholar
51.Rice, J.R. and Drucker, D.C., Int. J. Fract. Mech. 3, 19 (1967).CrossRefGoogle Scholar
52.Eshelby, J.D., Inelastic Behavior of Solids, (McGraw Hill, New York, 1970), pp. 78115.Google Scholar
53.Yang, W.H., & Srolovitz, D.J., J. Mech. Phys. Solids 42, 1551 (1994).CrossRefGoogle Scholar
54.Freund, L.B., Acta Mech. Sinica 1, 16 (1994).CrossRefGoogle Scholar
55.Freund, L.B., Int. J. Solids Struct. 32, 911 (1995).CrossRefGoogle Scholar
56.Gao, H., Proc. R. Soc. London, Ser. A 448, 465 (1995).Google Scholar
57.Hirth, J.P. and Lothe, J., Theory of Dislocations (Wiley Interscience, New York, 1982).Google Scholar
58.Gao, H., Int. J. Solids Structures 28, 703 (1991).CrossRefGoogle Scholar
59.Ingebrigtsen, K.A. and Tonning, A., Phys. Rev. 184, 942 (1969).CrossRefGoogle Scholar
60.Barnett, D.M. and Lothe, J., Proc. R. Soc. London, Ser. A 402, 135 (1985).Google Scholar
61.Liehr, M., in Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing, edited by Nemanich, R.J., Helms, C.R., Hirose, M., and Rubloff, G.W. (Mater. Res. Soc. Symp. Proc. 259, Pittsburgh, PA, 1992), p. 3.Google Scholar
62.Burrows, V.A., Chabal, Y.J., Higashi, G.S., Raghavachari, K., and Christman, S.B., Appl. Phys. Lett. 53, 998 (1988).CrossRefGoogle Scholar
63.Chen, C-C., Smith, D., Anderson, G., and Hagstrom, S., in Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing, edited by Nemanich, R.J., Helms, C.R., Hirose, M., and Rubloff, G.W. (Mater. Res. Soc. Symp. Proc. 259, Pittsburgh, PA, 1992), p. 443.Google Scholar
64.Ozkan, C.S., Nix, W.D., and Gao, H., in Thin Films—Stresses and Mechanical Properties VII, edited by Cammarata, R.C. and Nastasi, M.A. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 291.Google Scholar
65.Freund, L.B. and Jondsottir, F., J. Mech. Phys. Solids 41, 1245 (1993).CrossRefGoogle Scholar