Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:17:00.178Z Has data issue: false hasContentIssue false

Sol-gel processing of varistor powders

Published online by Cambridge University Press:  31 January 2011

Gert Hohenberger
Affiliation:
Universität Erlangen/Nürnberg, Institut für Werkstoffwissenschaften III, Martensstr. 5, D-8520 Erlangen, Germany
Gerhard Tomandl
Affiliation:
Universität Erlangen/Nürnberg, Institut für Werkstoffwissenschaften III, Martensstr. 5, D-8520 Erlangen, Germany
Get access

Abstract

A new sol-gel method for the preparation of ZnO varistor powders, using inexpensive source materials such as acetates and nitrates, is described. It yields powders with a more homogeneous distribution of dopants compared to the commercially used mixed oxide technique. Varistor ceramics made from sol-gel powders can be sintered at lower temperatures and show improved electrical behavior. This is a consequence of formation of more varistor-active grain boundaries within the ceramics.

Type
Communications
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Matsuoka, M., Jpn. J. Appl. Phys.. 10, 736 (1971).CrossRefGoogle Scholar
2.Einzinger, R., Ber. Dt. Keram. Ges. 52, 244 (1975).Google Scholar
3.van Kemenade, J. T. C. and Eijnthoven, R. K., J. Appl. Phys. 50, 938 (1979).CrossRefGoogle Scholar
4.Mahan, G. D., Levinson, L. M., and Philipp, H. R., J. Appl. Phys.. 50, 2799 (1979).CrossRefGoogle Scholar
5.Schwing, U. and Hoffmann, B., J. Appl. Phys. 57, 5372 (1985).CrossRefGoogle Scholar
6.Einzinger, R., Ann. Rev. Mater. Sci. 17, 299 (1987).CrossRefGoogle Scholar
7.Greuter, F. and Blatter, G., Semicond. Sci. Technol. 5, 111 (1990).CrossRefGoogle Scholar
8.Strassacker, P., A Defect Chemical Model for ZnO Varistors (VDIVerlag, Diisseldorf, Germany, 1987).Google Scholar
9.Tao, M., Ai, Bui, Dorlanne, O., and Loubiere, A., J. Appl. Phys. 61, 1562 (1987).CrossRefGoogle Scholar
10.Lauf, R. J. and Bond, W. D., Am. Ceram. Soc. Bull. 63, 665 (1986).Google Scholar
11.Sonder, E., Quinby, T. C., and Kinser, D. L., Am. Ceram. Soc. Bull.. 65, 665 (1986).Google Scholar
12.Dosh, R. G., Science of Chemical Processing, edited by Hench, L. L. (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1986), pp. 311319.Google Scholar
13.Seitz, K. and Ivers-Tiffee, E., Am. Ceram. Soc. Bull. 66, 1384 (1987).Google Scholar
14.Hashita, S., Yao, Y., and Shirasaki, S., J. Am. Ceram. Soc. 72, 338 (1989).CrossRefGoogle Scholar
15.Kuntz, M., Bauer, G., and Grobelsek, I., German Patent Office, Patentschrift DE 3916643C1 (1991).Google Scholar
16.Ebert, R., Taube, T., and Hohenberger, G., Capacitors and Resistors Technology Symposium (CARTS-Europe), Bordeaux (1990).Google Scholar