Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:25:13.031Z Has data issue: false hasContentIssue false

A small-angle x-ray scattering study of microstructure evolution during sintering of sol-gel-derived porous nanophase titania

Published online by Cambridge University Press:  31 January 2011

Vincent A. Hackley*
Affiliation:
Water Chemistry Program, University of Wisconsin, Madison, Wisconsin 53706
Marc A. Anderson
Affiliation:
Water Chemistry Program, University of Wisconsin, Madison, Wisconsin 53706
Steve Spooner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a)Current address: National Institute of Standards and Technology, Ceramics Division, Gaithersburg, Maryland 20899.
Get access

Abstract

The evolution of microstructure as a function of firing temperature in sol-gel derived porous titania xerogels was investigated by small-angle x-ray scattering (SAXS). SAXS curves for xerogels fired below 550 °C exhibit a well-defined structure peak. This peak indicates the presence of a high degree of order in the electron density correlations associated with the interparticle structure factor. Results from electron microscopy and SAXS give a primary particle mean diameter of 50 Å, while scaling analysis of the scattered intensity at large momentum transfer values yields the Porod exponent 4, indicating a sharp transition zone between the solid and void phases. The pore volume fraction of the unfired xerogel is consistent with random close-packing of spheres. The internal surface area decreases almost linearly with increasing firing temperature. Rapid grain growth and pore coarsening begin near 90% of theoretical density, and lead to a breakdown in pore interconnectedness and the development of isolated pores. Observed enhanced sintering properties may be attributed primarily to the large surface-to-mass ratio of the sol-gel particles. The SAXS curves were adequately fit using a bicontinuous phase model developed for late-stage spinodal decomposition structures. Alternatively, the microstructure can be described by a hierarchical close-packing of spheres model. SAXS results are compared with data from gas adsorption and electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hench, L.L. and West, J.K., Chem. Rev. 90, 33 (1990).Google Scholar
2.Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, edited by Klein, L. C. (Noyes, Park Ridge, NJ, 1988).Google Scholar
3.Brinker, C. J. and Scherer, G. W., Sol-Gel Science (Academic Press, New York, 1990).Google Scholar
4.Pettit, R.B., Ashley, C.S., Reed, S.T., and Brinker, C.J., in Ref. 2, Chap. 5, pp. 80109.Google Scholar
5.Anderson, M.A., Gieselmann, M.J., and Xu, Q., J. Membrane Sci. 39, 243 (1988).CrossRefGoogle Scholar
6.Lipeles, R. L., Coleman, D. J., and Leung, M. S., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 665.Google Scholar
7.Blum, J.B., in Ref. 2, Chap. 14, pp. 296302.Google Scholar
8.Haas, P. A., Chem. Eng. Prog. April, 44 (1989).Google Scholar
9.Schaefer, D. W. and Keefer, K. D., in Fractals in Physics, edited by Pietronero, L. and Tosatti, E. (Proc. 6th Trieste Int. Symp. Fractals Phys. Elsevier, Amsterdam, 1986), pp. 3945.Google Scholar
10.Wright, A.F., J. Non-Cryst. Solids 76, 43 (1985).Google Scholar
11.Price, D. L., Moss, S. C., Reijers, R., Soboungi, M-L., and Susman, S., J. Phys.: Condens. Matter 1, 1005 (1989).Google Scholar
12.Small Angle X-ray Scattering, edited by Glatter, O. and Kratky, O. (Academic Press, New York, 1982).Google Scholar
13.Anderson, M. A., Tiscareno-Lechuga, J., Xu, Q., and Hill, C. G., in Novel Materials in Heterogeneous Catalysis, edited by Baker, R. T. K. and Murrell, L. L. (ACS, Washington, DC, 1990), Chap. 19, pp. 198215.Google Scholar
14.Sabate, J., Anderson, M. A., Kikkawa, H., Edwards, M., and Hill, C. G., J. Catal. 127, 167 (1991).Google Scholar
15.Gieselmann, M. J., Anderson, M. A., Moosemiller, M. D., and Hill, C. G., Separation Sci. Technol. 23, 1695 (1988).Google Scholar
16.Uhlhorn, R.J., Thesis, Ph.D., University of Twente, 1990.Google Scholar
17.Siegel, R. W., Hahn, H., Zongquan, R. S., Ramasamy, S., Ting, L., and Gronsky, R., J. Phys. (Paris) 49, 681 (1988).Google Scholar
18.Pool, R., Science 248, 1186 (1990).CrossRefGoogle ScholarPubMed
19.Zernike, F. and Prins, J.A., Z. Phys. 41, 184 (1927).Google Scholar
20.Hayter, J. B., Faraday Discuss. Chem. Soc. 76, 7 (1983).CrossRefGoogle Scholar
21.Percus, J.K. and Yevick, G. J., Phys. Rev. 110, 1 (1958).Google Scholar
22.Thiele, E., J. Chem. Phys. 39, 474 (1963).CrossRefGoogle Scholar
23.Ashcroft, N. W. and Lekner, J., Phys. Rev. A 145, 83 (1966).CrossRefGoogle Scholar
24.deKruif, C. G., Briels, W. J., May, R. P., and Vrij, A., Langmuir 4, 668 (1988).Google Scholar
25.Hohr, A., Neumann, H., Schmidt, P.W., and Pfiefer, P., Phys. Rev. B 38, 1462 (1988).Google Scholar
26.Bernal, J. D. and Finney, J. L., Faraday Discuss. Chem. Soc. 43, 62 (1967).Google Scholar
27.Finney, J. L., Proc. Roy. Soc. Lond. A 319, 479 (1970).Google Scholar
28.Onoda, G.Y., Adv. Ceram. 21, 567 (1987).Google Scholar
29.Scott, G. D., Nature (London) 194, 956 (1962).CrossRefGoogle Scholar
30.Chen, S. H., Sheu, E. Y., Kalus, J., and Hoffmann, H., J. Appl. Cryst. 21, 751 (1988).CrossRefGoogle Scholar
31.Debye, P. and Bueche, A.M., J. Appl. Phys. 20, 518 (1949).Google Scholar
32.Debye, P., Anderson, H. R., and Brumberger, H., J. Appl. Phys. 28, 679 (1957).CrossRefGoogle Scholar
33.Hopper, R. W., J. Non-Cryst. Solids 49, 263 (1982).Google Scholar
34.Cahn, J.W., J. Chem. Phys. 42, 93 (1965).Google Scholar
35.Berk, N.F., J. Appl. Cryst. 21, 645 (1988).CrossRefGoogle Scholar
36.Hopper, R.W., J. Non-Cryst. Solids 70, 111 (1985).Google Scholar
37.Bradley, K. F., Chen, S. H., and Thiyagarajan, P., Phys. Rev. A 42, 6015 (1990).Google Scholar
38.Bradley, K. F. (private communication).Google Scholar
39.Porod, G., Kolloid Z. 124, 83 (1951).Google Scholar
40.Ruland, W., J. Appl. Crystallogr. 4, 70 (1971).Google Scholar
41.Porod, G., in Small-Angle X-ray Scattering, edited by Glatter, O. and Kratky, O. (Academic Press, New York, 1982), Chap. 2, pp. 1751.Google Scholar
42.Hendricks, R. W., J. Appl. Crystallogr. 11, 15 (1978).CrossRefGoogle Scholar
43.International Tables for X-Ray Crystallography, edited by Ibers, J. A. and Hamilton, W. C. (Kynoch Press, Birmingham, England, 1974), Vol. IV, Sect. 2.1.Google Scholar
44.Russell, T.P., Lin, J.S., Spooner, S., and Wignall, G.D., J. Appl. Cryst. 21, 629 (1988).Google Scholar
45.Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
46.Gregg, S. J. and Sing, K. S. W., Adsorption, Surface Area and Porosity, 2nd ed. (Academic Press, London, 1982).Google Scholar
47.Bernal, J. D., Proc. Royal Soc. A (London) 280, 299 (1964).Google Scholar
48.Chaput, F., Lecomte, A., Dauger, A., and Boilot, J. P., Chem. Mater. 1, 199 (1989).Google Scholar
49.Epperson, J.E., Siegel, R.W., White, J.W., Eastman, J.A., Liao, Y.X., and Narayanasamy, A., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L.E., Polk, D.E., Siegel, R.W., and Kear, B. H. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 15.Google Scholar
50.Epperson, J.E., Siegel, R.W., White, J.W., Klippert, T.E., Narayanasamy, A., Eastman, J.A., and Trouw, F., in Neutron Scattering for Materials Science, edited by Shapiro, S. M., Moss, S. C., and Jorgensen, J. D. (Mater. Res. Soc. Symp. Proc. 166, Pittsburgh, PA, 1990), p. 87.Google Scholar
51.Siegel, R.W. and Eastman, J.A., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L.E., Polk, D.E., Siegel, R.W., and Kear, B.H. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 3.Google Scholar
52.Pask, J. A., in Proc. Int. Symp. on Factors in Densification and Sintering of Oxide and Non-oxide Ceramics, edited by Sōmiya, S. and Saito, S. (Gakujutsu Bunken Fukyu-kai, Tokyo, 1978), p. 580.Google Scholar
53.Yan, M.F., Adv. Ceram. 21, 635 (1987).Google Scholar
54.Lange, F.F. and Kellett, B.J., J.Am. Ceram. Soc. 72, 735 (1989).CrossRefGoogle Scholar
55.Cameron, C.P. and Raj, R., J. Am. Ceram. Soc. 71, 1031 (1988).Google Scholar
56.Shannon, R. D. and Pask, J. A., Am. Mineralogist 49, 1707 (1964).Google Scholar
57.Coble, R. L. and Burke, J. E., in Progress in Ceramic Science, edited by Burke, J.E. (1963), Chap. 4, pp. 197251.Google Scholar
58.Larson, B. C. and Bale, H. D., in Small-Angle X-Ray Scattering, edited by Brumberger, H. (Gordon and Breach, New York, 1967), pp. 467476.Google Scholar
59.Scherer, G. W., J. Non-Cryst. Solids 100, 77 (1988).Google Scholar
60.Yarusso, D.J. and Register, R., computer code MHSCA4 (Department of Chemical Engineering, University of Wisconsin, Madison, Madison, WI, 1988).Google Scholar
61.Beurten, P.V., Frenkel, D., Coenen, S. and Duits, M., computer code SCATCO (Van't Hoff Laboratory, University of Utrecht, The Netherlands, 1990).Google Scholar
62.Duits, M. (private communication).Google Scholar
63.Lasalle, J. C., Spooner, S., and Schwartz, L. H., in Phase Transformations in Solids, edited by Tsakalakos, T. (Elsevier, New York, 1984), pp. 549555.Google Scholar