Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T09:25:40.036Z Has data issue: false hasContentIssue false

Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels

Published online by Cambridge University Press:  31 January 2011

Ján Majling
Affiliation:
Department of Ceramics, Slovak Technical University, 812 37 Bratislava, Slovak Republic
Peter Znáik
Affiliation:
Department of Ceramics, Slovak Technical University, 812 37 Bratislava, Slovak Republic
Angela Palová
Affiliation:
Department of Ceramics, Slovak Technical University, 812 37 Bratislava, Slovak Republic
Stefan Svetík
Affiliation:
Department of Ceramics, Slovak Technical University, 812 37 Bratislava, Slovak Republic
Stefan Kovalík
Affiliation:
Department of Materials Science and Technologies, Slovak Technical University, 812 37 Bratislava, Slovak Republic
Dinesh K. Agrawal
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Rustum Roy
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Dense and translucent ceramics were prepared by sintering of cylindrical preforms of hydroxyapatite extruded from xerogels. Extruded specimens were dried as monoliths and then consolidated by applying cold isostatic pressure, ranging from 500 to 1500 MPa. Upon heating the samples began to densify at 610 °C, and the densification/sintering was completed at 870 °C as was evidenced by the dilatometry plot indicating no further shrinkage. The sintered specimens thus formed were translucent in appearance. Further heating of the samples up to 1200 °C resulted in their “bloating” or creation of pores in the originally dense matrix. Pore creation within the structure is reproducible, it proceeds from the surface to the interior of the sample, and its spreading can be thermally controlled. Pore evolution within the single phase dense polycrystalline material is not related to the frequently occurring phenomenon of microcracking in ceramics during cooling.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jarcho, M., Bolen, C., Thomas, M., Bobick, J., Kay, J., and Doremus, R., J. Mater. Sci. 11, 2027 (1976).CrossRefGoogle Scholar
2.Osaka, A., Miura, Y., Takeuchi, K., and Takahashi, K., J. Mater. Sci.: Materials in Medicine 2, 51 (1991).Google Scholar
3.Ababou, A., Bernache-Assollant, D., and Heughebaert, M., Ceram. Processing Sci. Technol., p. 111.Google Scholar
4. Kazuo Kondo, Masahiko Okuyama, Hidetoshi Ogawa, and Yoshimasa Shibata, J. Am. Ceram. Soc., C-222 (1984).Google Scholar
5. Huaxia Ji and Marquis, P., J. Mater. Sci. Lett. 10, 132 (1991).Google Scholar
6.Akimov, G. J., Timtschenko, V. M., and Arseneev, P. A., Ogneupory. Nos. 1–5, 19 (1994).Google Scholar
7.Nordstrom, E. G. and Karlsson, K. H., J. Mater. Sci.: Materials in Medicine 1, 182 (1990).Google Scholar
8.Wang, P. E. and Chaki, T. K., J. Mater. Sci.: Materials in Medicine 4, 150 (1993).Google Scholar
9.Ioku, K., Soymia, S., and Yoshimura, M., J. Mater. Sci. Lett. 8, 1203 (1989).CrossRefGoogle Scholar
10.Takagi, M., Mochida, M., Uchida, N., Saito, K., and Uematsu, K., J. Mater. Sci.: Materials in Medicine 3, 199 (1992).Google Scholar
11.Agrawal, D. K., Fang, Y., Roy, D. M., and Roy, R., in Microwave Processing of Materials III, edited by Beatty, R. L., Sutton, W. H., and Oskander, M. F. (Mater. Res. Soc. Symp. Proc. 269, Pittsburgh, PA, 1992).Google Scholar
12.Bakó, Z. and Kotsis, I., Ceramics Int. 18, 373 (1992).CrossRefGoogle Scholar
13.De With, G., Van Dijk, H. J. A., Hattu, N., and Prijs, K., J. Mater. Sci. 16, 1592 (1981).CrossRefGoogle Scholar
14.Yamashita, K., Owada, H., Nakagawa, H., Umegaki, T., and Kanazawa, T., J. Am. Ceram. Soc. 69, 690 (1986).CrossRefGoogle Scholar
15.Nakamura, Satoshi, Otsuka, Ryohei, Aoki, Hideki, Akao, Masaru, Miura, Naoki, and Yamamoto, Takeyuki, Thermochim. Acta 165, 57 (1990).CrossRefGoogle Scholar
16.Itatani, Kiyoshi, Nishioka, Toshio, Seike, Satoru, Howell, F. S., Kishioka, Akira, and Kinoshita, Makio, J. Am. Ceram. Soc. 77, 801 (1994).CrossRefGoogle Scholar
17.Fujiu, T. and Messing, G. L., J. Mater. Synth. Process. 1, 33 (1993).Google Scholar
18.Bridgwater, J., Mater. Design 14, 1518 (1993).CrossRefGoogle Scholar
19.Kim, D-J. and Hrma, P., J. Am. Ceram. Soc. 75, 2959 (1992).CrossRefGoogle Scholar
20.Zhong, J. P., Fathi, Z., Latorre, G. P., Folz, D. C., and Clark, D. E., Ceram. Eng. Sci. Proc. 15, 1003 (1994).Google Scholar
21.Woignier, T., Phalippou, J., and Prassas, M., J. Mater. Sci. 25, 3118 (1990).CrossRefGoogle Scholar
22.Wakai, F., Kodama, Y., and Sakaguchi, S., J. Am. Ceram. Soc. 73, 457 (1990).CrossRefGoogle Scholar
23.Yamashita, K., Kitagaki, K., and Umegaki, T., J. Am. Ceram. Soc. 78, 1191 (1995).CrossRefGoogle Scholar