Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:27:28.218Z Has data issue: false hasContentIssue false

A silanol protection mechanism: Understanding the decomposition behavior of surfactants in mesostructured solids

Published online by Cambridge University Press:  11 March 2011

Dahai Pan
Affiliation:
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
Lingzhi Zhao
Affiliation:
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People’s Republic of China
Kun Qian
Affiliation:
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People’s Republic of China
Lei Tan
Affiliation:
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People’s Republic of China
Liang Zhou
Affiliation:
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People’s Republic of China
Jun Zhang
Affiliation:
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People’s Republic of China
Xiaodan Huang
Affiliation:
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People’s Republic of China
Yu Fan
Affiliation:
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
Haiyan Liu
Affiliation:
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
Chengzhong Yu*
Affiliation:
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People’s Republic of China; and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
Xiaojun Bao*
Affiliation:
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping, Beijing 102249, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The decomposition mechanism of block copolymer templates inside as-synthesized mesostructured solids has been systematically studied using solid-state 1H magic angle spinning nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and high-vacuum Fourier transform infrared spectrometry. It is shown that there exists hydrogen-bonding interaction between silanols and block copolymers at the inorganic–organic interface in the self-assembled as-synthesized mesostructured solids, which plays an important role in protecting the surfactants against decomposition during the high-temperature hydrothermal treatment process. Increasing silanol concentration can enhance the hydrogen-bonding interaction and thus shows better “protection” effect. Moreover, the thermal decomposition of the block copolymer in as-synthesized mesostructured solids in air commences at higher temperatures compared with that in acidic solution or in air, providing further evidence in support of the silanol protection mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S.: Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature. 359, 710 (1992).Google Scholar
2.Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., and Schlenker, J.L.: A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 114, 10834 (1992).CrossRefGoogle Scholar
3.Corma, A.: From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373 (1997).Google Scholar
4.Ariga, K., Vinu, A., Hill, J.P., and Mori, T.: Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coord. Chem. Rev. 251, 2562 (2007).CrossRefGoogle Scholar
5.Wan, Y., Shi, Y.F., and Zhao, D.Y.: Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem. Commun. (Camb.). 897 (2007).Google Scholar
6.Tao, Y.S., Kanoh, H., Abrams, L., and Kaneko, K.: Mesopore-modified zeolites: Preparation, characterization, and applications. Chem. Rev. 106, 896 (2006).Google Scholar
7.Sayari, A.: Catalysis by crystalline mesoporous molecular sieves. Chem. Mater. 8, 1840 (1996).CrossRefGoogle Scholar
8.Kuchibhatla, S., Karakoti, A.S., Bera, D., and Seal, S.: One-dimensional nanostructured materials. Prog. Mater. Sci. 52, 699 (2007).CrossRefGoogle Scholar
9.On, D.T., Desplantier-Giscard, D., Danumah, C., and Kaliaguine, S.: Perspectives in catalytic applications of mesostructured materials. Appl. Catal. A 222, 299 (2001).Google Scholar
10.Srivastava, R., Choi, M., and Ryoo, R.: Mesoporous materials with zeolite framework: Remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chem. Commun. (Camb.). 4489 (2006).Google Scholar
11.Wan, Y. and Zhao, D.Y.: On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821 (2007).CrossRefGoogle ScholarPubMed
12.Taguchi, A. and Schuth, F.: Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1 (2005).Google Scholar
13.Bagshaw, S.A., Prouzet, E., and Pinnavaia, T.J.: Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants. Science. 269, 1242 (1995).Google Scholar
14.Attard, G.S., Glyde, J.C., and Goltner, C.G.: Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature. 378, 366 (1995).CrossRefGoogle Scholar
15.Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 279, 548 (1998).CrossRefGoogle ScholarPubMed
16.Zhao, D.Y., Huo, Q.S., Feng, J.L., Chmelka, B.F., and Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024 (1998).Google Scholar
17.Han, Y. and Ying, J.Y.: Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures. Angew. Chem. Int. Ed. 44, 288 (2005).CrossRefGoogle Scholar
18.Han, Y., Li, D.F., Zhao, L., Song, J.W., Yang, X.Y., Li, N., Di, Y., Li, C.J., Wu, S., Xu, X.Z., Meng, X.J., Lin, K.F., and Xiao, F.S.: High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. Angew. Chem. Int. Ed. 42, 3633 (2003).Google Scholar
19.Liu, X.Y., Tian, B.Z., Yu, C.Z., Gao, F., Xie, S.H., Tu, B., Che, R.C., Peng, L.M., and Zhao, D.Y.: Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry. Angew. Chem. Int. Ed. 41, 3876 (2002).Google Scholar
20.Kleitz, F., Choi, S.H., and Ryoo, R.: Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. (Camb.). 2136 (2003).Google Scholar
21.Kim, T.W., Kleitz, F., Paul, B., and Ryoo, R.: MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer-butanol-water system. J. Am. Chem. Soc. 127, 7601 (2005).CrossRefGoogle Scholar
22.Fan, J., Yu, C.Z., Gao, T., Lei, J., Tian, B.Z., Wang, L.M., Luo, Q., Tu, B., Zhou, W.Z., and Zhao, D.Y.: Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem. Int. Ed. 42, 3146 (2003).CrossRefGoogle ScholarPubMed
23.Kim, S.S., Karkamkar, A., Pinnavaia, T.J., Kruk, M., and Jaroniec, M.: Synthesis and characterization of ordered, very large pore MSU-H silicas assembled from water-soluble silicates. J. Phys. Chem. B. 105, 7663 (2001).Google Scholar
24.Li, C.L., Wang, Y.Q., Guo, Y.L., Liu, X.H., Guo, Y., Zhang, Z.G., Wang, Y.S., and Lu, G.Z.: Synthesis of highly ordered, extremely hydrothermal stable SBA-15/Al-SBA-15 under the assistance of sodium chloride. Chem. Mater. 19, 173 (2007).Google Scholar
25.Li, D.F., Han, Y., Song, H.W., Zhao, L., Xu, X.Z., Di, Y., and Xiao, F.S.: High-temperature synthesis of stable ordered mesoporous silica materials by using fluorocarbon-hydrocarbon surfactant mixtures. Chemistry. 10, 5911 (2004).CrossRefGoogle ScholarPubMed
26.Wang, C.Y., Du, Y.C., Li, D.F., Guan, X.G., Li, F., and Xiao, F.S.: Design and synthesis of ordered mesoporous silica materials with high degree of silica condensation at high temperature from a mixture of polymer surfactant with small organic ammonium. J. Colloid Interface Sci. 319, 370 (2008).CrossRefGoogle ScholarPubMed
27.Xiao, N., Wang, L., Liu, S., Zou, Y.C., Wang, C.Y., Ji, Y.Y., Song, J.W., Li, F., Meng, X.J., and Xiao, F.S.: High-temperature synthesis of ordered mesoporous silicas from solo hydrocarbon surfactants and understanding of their synthetic mechanisms. J. Mater. Chem. 19, 661 (2009).Google Scholar
28.Pan, D.H., Yuan, P., Zhao, L.Z., Liu, N.A., Zhou, L., Wei, G.F., Zhang, J., Ling, Y.C., Fan, Y., Wei, B.Y., Liu, H.Y., Yu, C.Z., and Bao, X.J.: New understanding and simple approach to synthesize highly hydrothermally stable and ordered mesoporous materials. Chem. Mater. 21, 5413 (2009).Google Scholar
29.Ruthstein, S., Schmidt, J., Kesselman, E., Talmon, Y., and Goldfarb, D.: Resolving intermediate solution structures during the formation of mesoporous SBA-15. J. Am. Chem. Soc. 128, 3366 (2006).CrossRefGoogle ScholarPubMed
30.Vinu, A., Mori, T., and Ariga, K.: New families of mesoporous materials. Sci. Technol. Adv. Mater. 7, 753 (2006).Google Scholar
31.Imperor-Clerc, M., Grillo, I., Khodakov, A.Y., Durand, D., and Zholobenko, V.L.: New insights into the initial steps of the formation of SBA-15 materials: An in situ small angle neutron scattering investigation. Chem. Commun. (Camb.). 834 (2007).Google Scholar
32.Ruthstein, S., Frydman, V., and Goldfarb, D.: Study of the initial formation stages of the mesoporous material SBA-15 using spin-labeled block co-polymer templates. J. Phys. Chem. B. 108, 9016 (2004).CrossRefGoogle Scholar
33.Flodstrom, K., Teixeira, C.V., Amenitsch, H., Alfredsson, V., and Linden, M.: In situ synchrotron small-angle x-ray scattering/x-ray diffraction study of the formation of SBA-15 mesoporous silica. Langmuir. 20, 4885 (2004).Google Scholar
34.Flodstrom, K., Wennerstrom, H., and Alfredsson, V.: Mechanism of mesoporous silica formation. A time-resolved NMR and TEM study of silica-block copolymer aggregation. Langmuir. 20, 680 (2004).Google Scholar
35.Ruthstein, S., Frydman, V., Kababya, S., Landau, M., and Goldfarb, D.: Study of the formation of the mesoporous material SBA-15 by EPR spectroscopy. J. Phys. Chem. B. 107, 1739 (2003).Google Scholar
36.Berube, F. and Kaliaguine, S.: Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. Microporous Mesoporous Mater. 115, 469 (2008).CrossRefGoogle Scholar
37.Mansur, C.R.E., Gonzalez, G., and Lucas, E.F.: Calorimetry and thermogravimetry as tools for the assessment of the thermal stability of polyoxide-based nonionic surfactants. Polym. Degrad. Stab. 80, 579 (2003).CrossRefGoogle Scholar
38.Coutinho, A., Quintella, S.A., Araujo, A.S., Barros, J.M.F., Pedrosa, A.M.G., Fernandes, V.J., and Souza, M.J.B.: Thermogravimetry applied to characterization of SBA-15 nanostructured material. J. Therm. Anal. Calorim. 87, 457 (2007).CrossRefGoogle Scholar
39.Kruk, M., Jaroniec, M., Ko, C.H., and Ryoo, R.: Characterization of the porous structure of SBA-15. Chem. Mater. 12, 1961 (2000).CrossRefGoogle Scholar
40.Bae, Y.K. and Han, O.H.: Removal of copolymer template from SBA-15 studied by H-1 MAS NMR. Microporous Mesoporous Mater. 106, 304 (2007).CrossRefGoogle Scholar
41.Blin, J.L. and Carteret, C.: Investigation of the silanols groups of mesostructured silica prepared using a fluorinated surfactant: Influence of the hydrothermal temperature. J. Phys. Chem. C. 111, 14380 (2007).CrossRefGoogle Scholar
42.Xiao, L.P., Li, J.Y., Jin, H.X., and Xu, R.R.: Removal of organic templates from mesoporous SBA-15 at room temperature using UV/dilute H2O2. Microporous Mesoporous Mater. 96, 413 (2006).Google Scholar
43.Nawrocki, J.: The silanol group and its role in liquid chromatography. J. Chromatogr. A. 779, 29 (1997).CrossRefGoogle Scholar
44.Camarota, B., Onida, B., Goto, Y., Inagaki, S., and Garrone, E.: Hydroxyl species in large-pore phenylene-bridged periodic mesoporous organosilica. Langmuir. 23, 13164 (2007).CrossRefGoogle ScholarPubMed
45.Titova, T.I. and Kosheleva, L.S.: IR spectroscopic study of silica–triethylamine interaction. Colloids Surf. A 63, 97 (1992).Google Scholar
46.Hench, L.L. and West, J.K.: The sol–gel process. Chem. Rev. 90, 33 (1990).Google Scholar
47.Cihlar, J.: Hydrolysis and polycondensation of ethyl silicates. 2. Hydrolysis and polycondensation of ETS40 (ethyl silicate-40). Colloids Surf., A 70, 253 (1993).CrossRefGoogle Scholar
48.Coltrain, B.K. and Kelts, L.W.: The Chemistry of Hydrolysis and Condensation of Silica Sol-Gel Precursors (American Chemical Society, Washington, DC, 1994).CrossRefGoogle Scholar
49.Boissiere, C., Larbot, A., Bourgaux, C., Prouzet, E., and Bunton, C.A.: A study of the assembly mechanism of the mesoporous MSU-X silica two-step synthesis. Chem. Mater. 13, 3580 (2001).Google Scholar
50.Kleitz, F., Schmidt, W., and Schuth, F.: Calcination behavior of different surfactant-templated mesostructured silica materials. Microporous Mesoporous Mater. 65, 1 (2003).Google Scholar
Supplementary material: Image

Pan Supplementary Material

Pan Supplementary Figure 1

Download Pan Supplementary Material(Image)
Image 2.5 MB
Supplementary material: Image

Pan Supplementary Material

Pan Supplementary Figure 2

Download Pan Supplementary Material(Image)
Image 2 MB