Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T10:46:47.103Z Has data issue: false hasContentIssue false

Self-assembly monolayers boosting organic–inorganic halide perovskite solar cell performance

Published online by Cambridge University Press:  24 January 2018

Ru Qiao
Affiliation:
Department of Public Discipline Education, Tibet Agriculture and Animal Husbandry College, Nyingchi 860000, China
Lijian Zuo*
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Organic–inorganic halide perovskite solar cells (OIHPSCs) offer a fantastic opportunity to harness solar energy in a low cost and efficient way. This ambition for commercialization has been greatly encouraged by the surge in device performance from 3.8% in 2009 to the state-of-the-art 22.7%. For high device performance, tailoring the interfacial properties is demonstrated essentially important. Being in a molecular scale, the self-assembly monolayers (SAMs) are proved a facile but effective tool for interface modification. And lots of studies have demonstrated that SAMs have a variety of positive effects for perovskite solar cells, including mediating the morphology, improving energy level alignment, passivating trap states, etc. In this mini review, we give an insightful summary on the recent application of SAMs in OIHPSCs, analyze the mechanisms to improve device performance, and provide guidance to SAM-boosted perovskite solar cells for high performance and practical application. Finally, a landscape is depicted for future application of SAMs in perovskite solar cells.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Sam Zhang

References

REFERENCES

Snaith, H.J.: Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623 (2013).CrossRefGoogle Scholar
McGehee, M.D.: Perovskite solar cells: Continuing to soar. Nat. Mater. 13, 845 (2014).CrossRefGoogle ScholarPubMed
Gratzel, M.: The light and shade of perovskite solar cells. Nat. Mater. 13, 838 (2014).CrossRefGoogle ScholarPubMed
Bae, S-H., Zhao, H., Hsieh, Y-T., Zuo, L., De Marco, N., Rim, Y.S., Li, G., and Yang, Y.: Printable solar cells from advanced solution-processible. Mater. Chem. 1, 197 (2016).Google Scholar
Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., and Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013).CrossRefGoogle Scholar
Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014).CrossRefGoogle Scholar
Oga, H., Saeki, A., Ogomi, Y., Hayase, S., and Seki, S.: Improved understanding of the electronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818 (2014).CrossRefGoogle ScholarPubMed
Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., and Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics 9, 106 (2015).CrossRefGoogle Scholar
Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., and Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390 (2014).CrossRefGoogle ScholarPubMed
Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle ScholarPubMed
Yang, W.S., Park, B-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., and Seok, S.I.: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376 (2017).CrossRefGoogle ScholarPubMed
Jung, H.S. and Park, N-G.: Perovskite solar cells: From materials to devices. Small 11, 10 (2015).CrossRefGoogle ScholarPubMed
Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015).CrossRefGoogle ScholarPubMed
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).CrossRefGoogle ScholarPubMed
Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., and Snaith, H.J.: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151 (2014).CrossRefGoogle Scholar
Zuo, L., Dong, S., De Marco, N., Hsieh, Y-T., Bae, S-H., Sun, P., and Yang, Y.: Morphology evolution of high efficiency perovskite solar cells via vapor induced intermediate phases. J. Am. Chem. Soc. 138, 15710 (2016).CrossRefGoogle ScholarPubMed
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T-b., Duan, H-S., Hong, Z., You, J., Liu, Y., and Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014).CrossRefGoogle ScholarPubMed
Chen, Q., De Marco, N., Yang, Y., Song, T-B., Chen, C-C., Zhao, H., Hong, Z., Zhou, H., and Yang, Y.: Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355 (2015).CrossRefGoogle Scholar
Cheng, Z. and Lin, J.: Layered organic–inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12, 2646 (2010).CrossRefGoogle Scholar
Saliba, M., Matsui, T., Domanski, K., Seo, J-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J-P., Tress, W.R., Abate, A., Hagfeldt, A., and Grätzel, M.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206 (2016).CrossRefGoogle ScholarPubMed
Bi, C., Shao, Y., Yuan, Y., Xiao, Z., Wang, C., Gao, Y., and Huang, J.: Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2, 18508 (2014).CrossRefGoogle Scholar
Aharon, S., Layani, M., Cohen, B-E., Shukrun, E., Magdassi, S., and Etgar, L.: Self-assembly of perovskite for fabrication of semitransparent perovskite solar cells. Adv. Mater. Interfaces 2, 1500118 (2015).CrossRefGoogle Scholar
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234 (2015).CrossRefGoogle ScholarPubMed
Burschka, J., Pellet, N., Moon, S-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., and Gratzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013).CrossRefGoogle ScholarPubMed
Wang, Q., Shao, Y., Dong, Q., Xiao, Z., Yuan, Y., and Huang, J.: Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 7, 2359 (2014).CrossRefGoogle Scholar
Liu, M., Johnston, M.B., and Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395398 (2013).CrossRefGoogle ScholarPubMed
Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H-S., Wang, H-H., Liu, Y., Li, G., and Yang, Y.: Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622 (2014).CrossRefGoogle ScholarPubMed
Ahn, N., Son, D-Y., Jang, I-H., Kang, S.M., Choi, M., and Park, N-G.: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696 (2015).CrossRefGoogle ScholarPubMed
Yan, K., Long, M., Zhang, T., Wei, Z., Chen, H., Yang, S., and Xu, J.: Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460 (2015).CrossRefGoogle ScholarPubMed
Liang, P-W., Liao, C-Y., Chueh, C-C., Zuo, F., Williams, S.T., Xin, X-K., Lin, J., and Jen, A.K.Y.: Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748 (2014).CrossRefGoogle ScholarPubMed
Zuo, L., Gu, Z., Ye, T., Fu, W., Wu, G., Li, H., and Chen, H.: Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137, 2674 (2015).CrossRefGoogle ScholarPubMed
Aizenberg, J., Black, A.J., and Whitesides, G.M.: Control of crystal nucleation by patterned self-assembled monolayers. Nature 398, 495 (1999).CrossRefGoogle Scholar
Zuo, L., Chen, Q., De Marco, N., Hsieh, Y-T., Chen, H., Sun, P., Chang, S-Y., Zhao, H., Dong, S., and Yang, Y.: Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells. Nano Lett. 17, 269 (2017).CrossRefGoogle ScholarPubMed
Guarnera, S., Abate, A., Zhang, W., Foster, J.M., Richardson, G., Petrozza, A., and Snaith, H.J.: Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 6, 432 (2015).CrossRefGoogle ScholarPubMed
Liu, M., Johnston, M.B., and Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013).CrossRefGoogle ScholarPubMed
Kim, H-S., Lee, C-R., Im, J-H., Lee, K-B., Moehl, T., Marchioro, A., Moon, S-J., Humphry-Baker, R., Yum, J-H., Moser, J.E., Grätzel, M., and Park, N-G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).CrossRefGoogle ScholarPubMed
Correa Baena, J.P., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T.J., Srimath Kandada, A.R., Zakeeruddin, S.M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Gratzel, M., and Hagfeldt, A.: Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928 (2015).CrossRefGoogle Scholar
Cao, B., He, X., Fetterly, C.R., Olsen, B.C., Luber, E.J., and Buriak, J.M.: Role of interfacial layers in organic solar cells: Energy level pinning versus phase segregation. ACS Appl. Mater. Interfaces 8, 18238 (2016).CrossRefGoogle ScholarPubMed
Wang, Q., Chueh, C-C., Zhao, T., Cheng, J., Eslamian, M., Choy, W.C.H., and Jen, A.K.Y.: Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. ChemSusChem 10, 37943803 (2017).CrossRefGoogle ScholarPubMed
Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M.: Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103 (2005).CrossRefGoogle ScholarPubMed
Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533 (1996).CrossRefGoogle ScholarPubMed
Casalini, S., Bortolotti, C.A., Leonardi, F., and Biscarini, F.: Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 46, 40 (2017).CrossRefGoogle ScholarPubMed
Fan, F-R.F., Yang, J., Cai, L., Price, D.W., Dirk, S.M., Kosynkin, D.V., Yao, Y., Rawlett, A.M., Tour, J.M., and Bard, A.J.: Charge transport through self-assembled monolayers of compounds of interest in molecular electronics. J. Am. Chem. Soc. 124, 5550 (2002).CrossRefGoogle ScholarPubMed
Wold, D.J., Haag, R., Rampi, M.A., and Frisbie, C.D.: Distance dependence of electron tunneling through self-assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions. J. Phys. Chem. B 106, 2813 (2002).CrossRefGoogle Scholar
Yip, H-L., Hau, S.K., Baek, N.S., Ma, H., and Jen, A.K.Y.: Polymer solar cells that use self-assembled-monolayer-modified ZnO/metals as cathodes. Adv. Mater. 20, 2376 (2008).CrossRefGoogle Scholar
Ma, H., Yip, H-L., Huang, F., and Jen, A.K.Y.: Interface engineering for organic electronics. Adv. Funct. Mater. 20, 1371 (2010).CrossRefGoogle Scholar
Acton, O., Hutchins, D., Árnadóttir, L., Weidner, T., Cernetic, N., Ting, G.G., Kim, T-W., Castner, D.G., Ma, H., and Jen, A.K.Y.: Spin-cast and patterned organophosphonate self-assembled monolayer dielectrics on metal-oxide-activated Si. Adv. Mater. 23, 1899 (2011).CrossRefGoogle ScholarPubMed
Hutchins, D.O., Acton, O., Weidner, T., Cernetic, N., Baio, J.E., Ting, G., Castner, D.G., Ma, H., and Jen, A.K.Y.: Spin cast self-assembled monolayer field effect transistors. Org. Electron. 13, 464 (2012).CrossRefGoogle Scholar
Cho, C-P., Chu, C-C., Chen, W-T., Huang, T-C., and Tao, Y-T.: Molecular modification on dye-sensitized solar cells by phosphonate self-assembled monolayers. J. Mater. Chem. 22, 2915 (2012).CrossRefGoogle Scholar
Abrusci, A., Stranks, S.D., Docampo, P., Yip, H-L., Jen, A.K.Y., and Snaith, H.J.: High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124 (2013).CrossRefGoogle ScholarPubMed
Li, B., Chen, Y., Liang, Z., Gao, D., and Huang, W.: Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell. RSC Adv. 5, 94290 (2015).CrossRefGoogle Scholar
Liu, L., Mei, A., Liu, T., Jiang, P., Sheng, Y., Zhang, L., and Han, H.: Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137, 1790 (2015).CrossRefGoogle ScholarPubMed
Kim, H.B., Im, I., Yoon, Y., Sung, S.D., Kim, E., Kim, J., and Lee, W.I.: Enhancement of photovoltaic properties of CH3NH3PbBr3 heterojunction solar cells by modifying mesoporous TiO2 surfaces with carboxyl groups. J. Mater. Chem. A 3, 9264 (2015).CrossRefGoogle Scholar
Cao, J., Yin, J., Yuan, S., Zhao, Y., Li, J., and Zheng, N.: Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale 7, 9443 (2015).CrossRefGoogle ScholarPubMed
Gu, Z., Zuo, L., Larsen-Olsen, T.T., Ye, T., Wu, G., Krebs, F.C., and Chen, H.: Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. J. Mater. Chem. A 3, 24254 (2015).CrossRefGoogle Scholar
Vericat, C., Vela, M.E., Benitez, G., Carro, P., and Salvarezza, R.C.: Self-assembled monolayers of thiols and dithiols on gold: New challenges for a well-known system. Chem. Soc. Rev. 39, 1805 (2010).CrossRefGoogle Scholar
Yang, G., Tao, H., Qin, P., Ke, W., and Fang, G.: Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 4, 3970 (2016).CrossRefGoogle Scholar
Savva, A., Papadas, I.T., Tsikritzis, D., Armatas, G.S., Kennou, S., and Choulis, S.A.: Room temperature nanoparticulate interfacial layers for perovskite solar cells via solvothermal synthesis. J. Mater. Chem. A 5, 2038120389 (2017).CrossRefGoogle Scholar
Cho, A-N. and Park, N-G.: Impact of interfacial layers in perovskite solar cells. ChemSusChem 10, 36873704 (2017).CrossRefGoogle Scholar
Bai, Y., Dong, Q., Shao, Y., Deng, Y., Wang, Q., Shen, L., Wang, D., Wei, W., and Huang, J.: Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 7, 12806 (2016).CrossRefGoogle ScholarPubMed
Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T., and Hayase, S.: All-solid perovskite solar cells with HOCO-r-NH3 +I anchor-group inserted between porous titania and perovskite. J. Phys. Chem. C 118, 16651 (2014).CrossRefGoogle Scholar
Yan, C., Zharnikov, M., Gölzhäuser, A., and Grunze, M.: Preparation and characterization of self-assembled monolayers on indium tin oxide. Langmuir 16, 6208 (2000).CrossRefGoogle Scholar
Dong, J., Wang, A., Ng, K.Y.S., and Mao, G.: Self-assembly of octadecyltrichlorosilane monolayers on silicon-based substrates by chemical vapor deposition. Thin Solid Films 515, 2116 (2006).CrossRefGoogle Scholar
Deering, A.L., Van Lue, S.M., and Kandel, S.A.: Ambient-pressure vapor deposition of octanethiol self-assembled monolayers. Langmuir 21, 10260 (2005).CrossRefGoogle ScholarPubMed
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595 (2010).CrossRefGoogle ScholarPubMed
Kessel, C.R. and Granick, S.: Formation and characterization of a highly ordered and well-anchored alkylsilane monolayer on mica by self-assembly. Langmuir 7, 532 (1991).CrossRefGoogle Scholar
Niskala, J.R., Rice, W.C., Bruce, R.C., Merkel, T.J., Tsui, F., and You, W.: Tunneling characteristics of Au–alkanedithiol–Au junctions formed via nanotransfer printing (nTP). J. Am. Chem. Soc. 134, 12072 (2012).CrossRefGoogle ScholarPubMed
Bruce, R.C., Wang, R., Rawson, J., Therien, M.J., and You, W.: Valence band dependent charge transport in bulk molecular electronic devices incorporating highly conjugated multi-[(porphinato)metal] oligomers. J. Am. Chem. Soc. 138, 2078 (2016).CrossRefGoogle ScholarPubMed
Crudden, C.M., Horton, J.H., Ebralidze, I.I., Zenkina, O.V., McLean, A.B., Drevniok, B., She, Z., Kraatz, H-B., Mosey, N.J., Seki, T., Keske, E.C., Leake, J.D., Rousina-Webb, A., and Wu, G.: Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 6, 409 (2014).CrossRefGoogle ScholarPubMed
Wei, D., Ji, J., Song, D., Li, M., Cui, P., Li, Y., Mbengue, J.M., Zhou, W., Ning, Z., and Park, N-G.: A TiO2 embedded structure for perovskite solar cells with anomalous grain growth and effective electron extraction. J. Mater. Chem. A 5, 1406 (2017).CrossRefGoogle Scholar
Hau, S.K., Cheng, Y-J., Yip, H-L., Zhang, Y., Ma, H., and Jen, A.K.Y.: Effect of chemical modification of fullerene-based self-assembled monolayers on the performance of inverted polymer solar cells. ACS Appl. Mater. Interfaces 2, 1892 (2010).CrossRefGoogle Scholar
Wojciechowski, K., Stranks, S.D., Abate, A., Sadoughi, G., Sadhanala, A., Kopidakis, N., Rumbles, G., Li, C-Z., Friend, R.H., Jen, A.K.Y., and Snaith, H.J.: Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8, 12701 (2014).CrossRefGoogle ScholarPubMed
An, Q., Fassl, P., Hofstetter, Y.J., Becker-Koch, D., Bausch, A., Hopkinson, P.E., and Vaynzof, Y.: High performance planar perovskite solar cells by ZnO electron transport layer engineering. Nano Energy 39, 400 (2017).CrossRefGoogle Scholar
Li, Y., Zhao, Y., Chen, Q., Yang, Y., Liu, Y., Hong, Z., Liu, Z., Hsieh, Y-T., Meng, L., Li, Y., and Yang, Y.: Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 137, 15540 (2015).CrossRefGoogle ScholarPubMed
Azmi, R., Hadmojo, W.T., Sinaga, S., Lee, C-L., Yoon, S.C., Jung, I.H., and Jang, S-Y.: High-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Adv. Energy Mater. 7, 1701683 (2017).Google Scholar
Yang, G., Wang, C., Lei, H., Zheng, X., Qin, P., Xiong, L., Zhao, X., Yan, Y., and Fang, G.: Interface engineering in planar perovskite solar cells: Energy level alignment, perovskite morphology control and high performance achievement. J. Mater. Chem. A 5, 1658 (2017).CrossRefGoogle Scholar
Zuo, L., Guo, H., deQuilettes, D.W., Jariwala, S., De Marco, N., Dong, S., DeBlock, R., Ginger, D.S., Dunn, B., Wang, M., and Yang, Y.: Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017).CrossRefGoogle ScholarPubMed
Zhang, J., Hu, Z., Huang, L., Yue, G., Liu, J., Lu, X., Hu, Z., Shang, M., Han, L., and Zhu, Y.: Bifunctional alkyl chain barriers for efficient perovskite solar cells. Chem. Commun. 51, 7047 (2015).CrossRefGoogle ScholarPubMed
Wang, Q., Dong, Q., Li, T., Gruverman, A., and Huang, J.: Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734 (2016).CrossRefGoogle ScholarPubMed
Chen, R., Cao, J., Wu, Y., Jing, X., Wu, B., and Zheng, N.: Improving efficiency and stability of perovskite solar cells by modifying mesoporous TiO2–perovskite interfaces with both aminocaproic and caproic acids. Adv. Mater. Interfaces 4, 1700897 (2017).CrossRefGoogle Scholar