Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:11:22.672Z Has data issue: false hasContentIssue false

Selective electron-induced decomposition of CVD SiO2 overlayers on oxides

Published online by Cambridge University Press:  31 January 2011

T. Okuhara
Affiliation:
Department of Chemistry and Center for Materials Chemistry, University of Texas, Austin, Texas 78712
J. M. White
Affiliation:
Department of Chemistry and Center for Materials Chemistry, University of Texas, Austin, Texas 78712
Get access

Abstract

The electron-induced decomposition (EID) of SiO2 overlayers on various high surface area oxide substrates was studied using Auger electron analysis (AES). Bulk SiO2 was stable upon electron bombardment, but bulk Al2O3 decomposed readily to elemental Al when the primary electron beam energy was 2 keV and the beam current was 6–16 μA. On the other hand, SiO2 overlayers having an average thickness of about 10 Å on Al2O3 decomposed selectively under the same conditions. In contrast to Al2O3 substrates, SiO2 overlayers on TiO2, ZrO2, and MgO were quite stable to the same electron bombardment. Therefore it is concluded that Al2O3 accelerates the EID of SiO2 overlayers and the SiO2 overlayer suppresses EID of Al2O3 substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1McGuire, G. E., Surf. Sci. 76, 130 (1978).CrossRefGoogle Scholar
2Schwidtal, K., Surf. Sci. 77, 523 (1978).CrossRefGoogle Scholar
3Zilinskas, E., Skorobogatas, H., Pranevicius, L., and Sakalas, A., Surf. Sci. 134, 464 (1983).CrossRefGoogle Scholar
4Carrier, B. and Lang, B., Surf. Sci. 64, 209 (1977).CrossRefGoogle Scholar
5Smith, T., Surf. Sci. 55, 601 (1976).CrossRefGoogle Scholar
6Thomas, S., Surf. Sci. 55, 754 (1976).CrossRefGoogle Scholar
7Janssen, A. P., Shoonmarker, R. C., Chambers, A., and Prutton, M., Surf. Sci. 45, 45 (1974).CrossRefGoogle Scholar
8Chem. Eng. News, 11 August 1986, p. 22.Google Scholar
9Okuhara, T., Jin, T., and White, J. M., Appl. Surf. Sci. (to be published).Google Scholar
10Beck, D. D. and White, J. M., J. Phys. Chem. 88, 2764 (1984).CrossRefGoogle Scholar
11Henderson, M., Jin, T., and White, J. M., Appl. Surf. Sci. 27, 127 (1986); J. Phys. Chem. 90, 4607 (1986).CrossRefGoogle Scholar
12Jin, T., Okuhara, T., Mains, G., and White, J. M., J. Phys. Chem. 91, 3310 (1987).CrossRefGoogle Scholar
13Quinto, D. T. and Robertson, W. D., Surf. Sci. 27, 645 (1971).CrossRefGoogle Scholar
14Madden, H. H. and Goodman, D. W., Surf. Sci. 150, 39 (1985).CrossRefGoogle Scholar
15Derrien, J. and Commandre, M., Surf. Sci. 118, 32 (1982).Google Scholar
16Carriere, B. and Deville, J. P., Surf. Sci. 80, 278 (1979).CrossRefGoogle Scholar
17Chang, C. C., Surf. Sci. 25, 53 (1971).CrossRefGoogle Scholar
18Chang, C. C. and Boulin, D. M., Surf. Sci. 69, 385 (1977).CrossRefGoogle Scholar