Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T20:34:47.910Z Has data issue: false hasContentIssue false

Rheological characterization of biocompatible associative polymer hydrogels with crystalline and amorphous endblocks

Published online by Cambridge University Press:  01 August 2006

Sarvesh K. Agrawal
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003
Naomi Sanabria-DeLong
Affiliation:
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003
Gregory N. Tew*
Affiliation:
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003
Surita R. Bhatia*
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003
*
a)Address all correspondence to these authors. e-mail: [email protected]
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Control over mechanical properties of hydrogels is of primary importance for the use of these materials in drug delivery and tissue engineering applications. We demonstrate here that crystallinity and block length of poly(lactide) (PLA) can be used to tune the elastic modulus of associative network gels of poly(lactide)–poly(ethylene oxide)–poly(lactide) over several orders of magnitude. Polymers made with crystalline L lactic acid blocks formed very stiff hydrogels at 25 wt% concentration with an elastic modulus that was almost an order of magnitude higher than hydrogels of polymers with a similar molecular weight but containing amorphous D/L-lactic acid blocks. The relaxation behavior and crosslink density of gels are also significantly influenced by crystallinity of PLA and are again a function of PLA block length. Using these variables we can design new tailor-made materials for biomedical applications with precise control over their structure and mechanical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Engler, A.J., Griffin, M.A., Sen, S., Bonnetnann, C.G., Sweeney, H.L., Discher, D.E.: Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877 (2004).CrossRefGoogle ScholarPubMed
2.Discher, D.E., Janmey, P., Wang, Y.L.: Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139 (2005).CrossRefGoogle Scholar
3.Engler, A.J., Sweeney, H.L., Discher, D.E.: Substrate elasticity alters human mesenchymal stem cell differentiation. Biophys. J. 88, 500A (2005).Google Scholar
4.Bao, G., Suresh, S.: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715 (2003).CrossRefGoogle ScholarPubMed
5.Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869 (2001).CrossRefGoogle ScholarPubMed
6.Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Delivery Rev. 54(1), 3 (2002).CrossRefGoogle ScholarPubMed
7.Kissel, T., Li, Y.X., Unger, F.: ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Adv. Drug Delivery Rev. 54(1), 99 (2002).CrossRefGoogle ScholarPubMed
8.Langer, R., Peppas, N.A.: Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 49, 2990 (2003).CrossRefGoogle Scholar
9.Yaszemski, M.J.: Tissue Engineering and Novel Delivery System (Marcel Dekker, New York, 2004), pp. vii, 645.Google Scholar
10.Tew, G.N., Sanabria-DeLong, N., Agrawal, S.K., Bhatia, S.R.: New properties from PLA-PEO-PLA hydrogels. Soft Matter 1, 253 (2005).CrossRefGoogle ScholarPubMed
11.Bi, J.J., Downs, J.C., Jacob, J.T.: Tethered protein/peptide-surface-modified hydrogels. J. Biomater. Sci. Polym. Ed. 15, 905 (2004).CrossRefGoogle ScholarPubMed
12.Noorjahan, S.E., Sastry, T.P.: An in vivo study of hydrogels based on physiologically clotted fibrin-gelatin composites as wound-dressing materials. J. Biomed. Mater. Res. B Appl. Biomater. 71B, 305 (2004).CrossRefGoogle Scholar
13.Aamer, K.A., Sardinha, H., Bhatia, S.R., Tew, G.N.: Rheological studies of PLLA-PEO-PLLA triblock copolymer hydrogels. Biomaterials 25, 1087 (2004).CrossRefGoogle ScholarPubMed
14.Nowak, A.P., Breedveld, V., Pakstis, L., Ozbas, B., Pine, D.J., Pochan, D., Deming, T.J.: Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424 (2002).CrossRefGoogle ScholarPubMed
15.Seal, B.L., Panitch, A.: Physical polymer matrices based on affinity interactions between peptides and polysaccharides. Biomacromolecules 4, 1572 (2003).CrossRefGoogle ScholarPubMed
16.Vernon, R.B., Gooden, M.D., Lara, S.L., Wight, T.N.: Native fibrillar collagen membranes of micron-scale and submicron thicknesses for cell support and perfusion. Biomaterials 26, 1109 (2005).CrossRefGoogle ScholarPubMed
17.Choi, S.K., Kim, D.: Drug-releasing behavior of MPEG/PLA block copolymer micelles and solid particles controlled by component block length. J. Appl. Polym. Sci. 83, 435 (2002).Google Scholar
18.Jeong, B., Bae, Y.H., Lee, D.S., Kim, S.W.: Biodegradable block copolymers as injectable drug delivery systems. Nature 388, 860 (1997).CrossRefGoogle ScholarPubMed
19.Jeong, B., Kibbey, M.R., Birnbaum, J.C., Won, Y.Y., Gutowska, A.: Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules 33, 8317 (2000).CrossRefGoogle Scholar
20.Kricheldorf, H.R., Meierhaack, J.: Polylactones.22. ABA triblock copolymers of L-lactide and poly(ethylene glycol). Macromol. Chem. Phys. 194, 715 (1993).CrossRefGoogle Scholar
21.Kubies, D., Rypacek, F., Kovarova, J., Lednicky, F.: Microdomain structure in polylactide-block-poly(ethylene oxide) copolymer films. Biomaterials 21, 529 (2000).CrossRefGoogle ScholarPubMed
22.Li, S.M., Rashkov, I., Espartero, J.L., Manolova, N., Vert, M.: Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(L-lactic acid) blocks. Macromolecules 29, 57 (1996).CrossRefGoogle Scholar
23.Li, Y.X., Kissel, T.: Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly(L-lactic acid) or poly(L-lactic-Co-glycolic acid) A-blocks attached to central poly(oxyethylene) B-Blocks. J. Controlled Release 27, 247 (1993).Google Scholar
24.Li, Y.X., Volland, C., Kissel, T.: In-vitro degradation and bovine serum-albumin release of the Aba triblock copolymers consisting of poly(L(+)lactic acid), or poly(L(+)lactic acid-Co-glycolic acid) A-blocks attached to central polyoxyethylene B-blocks. J. Controlled Release 32, 121 (1994).Google Scholar
25.Liu, L., Li, C.X., Liu, X.H., He, B.L.: Micellar formation in aqueous milieu from biodegradable triblock copolymer polylactide/poly(ethylene glycol)/polylactide. Polym. J. 31, 845 (1999).CrossRefGoogle Scholar
26.Molina, I., Li, S.M., Martinez, M.B., Vert, M.: Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 22, 363 (2001).CrossRefGoogle ScholarPubMed
27.Rashkov, I., Manolova, N., Li, S.M., Espartero, J.L., Vert, M.: Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(L-lactic acid) chains. Macromolecules 29, 50 (1996).CrossRefGoogle Scholar
28.Saito, N., Okada, T., Horiuchi, H., Murakami, N., Takahashi, J., Nawata, M., Ota, H., Nozaki, K., Takaoka, K.: A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat. Biotechnol. 19, 332 (2001).CrossRefGoogle ScholarPubMed
29.Yasugi, K., Nagasaki, Y., Kato, M., Kataoka, K.: Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D,L-lactide) block copolymers as potential drug carrier. J. Controlled Release 62(1-2), 89 (1999).CrossRefGoogle ScholarPubMed
30.Lee, D.S., Shim, M.S., Kim, S.W., Lee, H., Park, I., Chang, T.Y.: Novel thermoreversible gelation of biodegradable PLGA-block- PEO-block-PLGA triblock copolymers in aqueous solution. Macromol. Rapid Commun. 22, 587 (2001).3.0.CO;2-8>CrossRefGoogle Scholar
31.Lee, H.T., Lee, D.S.: Thermoresponsive phase transitions of PLA-block-PEO-block-PLA triblock stereo-copolymers in aqueous solution. Macromol. Res. 10, 359 (2002).CrossRefGoogle Scholar
32.Shim, M.S., Lee, H.T., Shim, W.S., Park, I., Lee, H., Chang, T., Kim, S.W., Lee, D.S.: Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)- b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J. Biomed. Mater. Res. 61, 188 (2002).CrossRefGoogle ScholarPubMed
33.Jeong, B., Bae, Y.H., Kim, S.W.: Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32, 7064 (1999).CrossRefGoogle Scholar
34.Jeong, B., Kim, S.W., Bae, Y.H.: Thermosensitive sol-gel reversible hydrogels. Adv. Drug Delivery Rev. 54(1), 37 (2002).CrossRefGoogle ScholarPubMed
35.Agrawal, S.K., Chin, K.S., Sanabria-DeLong, N., Aamer, K.A., Sardinha, H., Tew, G.N., Robert, S.C., and Bhatia, S.R.: Rheology and biocompatibility of poly(lactide)-poly(ethylene oxide)-poly(lactide) hydrogels, in Mechanical Properties of Bioinspired and Biological Materials edited by Viney, C., Katti, K., Ulm, F-J., and Hellmich, C. (Mater. Res. Soc. Symp. Proc. 844, Warrendale, PA, 2005), Y9.8, p. 327.Google Scholar
36.Annable, T., Buscall, R., Ettelaie, R., Whittlestone, D.: The rheology of solutions of associating polymers–Comparison of experimental behavior with transient network theory. J. Rheol. 37, 695 (1993).CrossRefGoogle Scholar
37.Semenov, A.N., Joanny, J.F., Khokhlov, A.R.: Associating polymers–Equilibrium and linear viscoelasticity. Macromolecules 28, 1066 (1995).CrossRefGoogle Scholar
38.Serero, Y., Aznar, R., Porte, G., Berret, J.F., Calvet, D., Collet, A., Viguier, M.: Associating polymers: From “flowers” to transient networks. Phys. Rev. Lett. 81, 5584 (1998).CrossRefGoogle Scholar
39.Tanaka, F., Edwards, S.F.: Viscoelastic properties of physically cross-linked networks–Transient network theory. Macromolecules 25, 1516 (1992).CrossRefGoogle Scholar
40.Sanabria-DeLong, N., Agrawal, S.K., Bhatia, S.R., Tew, G.N.: Controlling hydrogel properties by crystallization of hydrophobic domains. Macromolecules 39, 1308 (2006).CrossRefGoogle Scholar
41.Tae, G., Kornfield, J.A., Hubbell, J.A., Johannsmann, D., Hogen-Esch, T.E.: Hydrogels with controlled, surface erosion characteristics from self-assembly of fluoroalkyl-ended poly(ethylene glycol). Macromolecules 34, 6409 (2001).CrossRefGoogle Scholar
42.Hassan, C.M., Peppas, N.A.: Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci. 153, 37 (2000).CrossRefGoogle Scholar
43.Ricciardi, R., D’Errico, G., Auriemma, F., Ducouret, G., Tedeschi, A.M., De Rosa, C., Laupretre, F., Lafuma, F.: Short-time dynamics of solvent molecules and supramolecular organization of poly (vinyl alcohol) hydrogels obtained by freeze/thaw techniques. Macromolecules 38, 6629 (2005).CrossRefGoogle Scholar
44.Misra, S., Nguyenmisra, M., Mattice, W.L.: Bridging by reversibly adsorbed telechelic polymers—A transient network. Macromolecules 27, 5037 (1994).CrossRefGoogle Scholar
45.Pham, Q.T., Russel, W.B., Thibeault, J.C., Lau, W.: Micellar solutions of associative triblock copolymers: The relationship between structure and rheology. Macromolecules 32, 5139 (1999).CrossRefGoogle Scholar
46.Tae, G.Y., Kornfield, J.A., Hubbell, J.A., Lal, J.S.: Ordering transitions of fluoroalkyl-ended poly(ethylene glycol): Rheology and SANS. Macromolecules 35, 4448 (2002).CrossRefGoogle Scholar
47.Winnik, M.A., Yekta, A.: Associative polymers in aqueous solution. Curr. Opin. Colloid Interf. Sci. 2, 424 (1997).CrossRefGoogle Scholar
48.Xu, B., Li, L., Yekta, A., Masoumi, Z., Kanagalingam, S., Winnik, M.A., Zhang, K.W., Macdonald, P.M.: Synthesis, characterization, and rheological behavior of polyethylene glycols end-capped with fluorocarbon hydrophobes. Langmuir 13, 2447 (1997).CrossRefGoogle Scholar
49.Stockwell, R., Meachim, G.The chondrocyte, in Adult Articular Cartilage, edited by Freeman, M.A.R., (Pitman Medical, Tunbridge Wells, England, 1979).Google Scholar
50.Frank, E.H., Grodzinsky, A.J.: Cartilage electromechanics—II. A continuum model of cartilage electrokinetics and correlation with experiments. J. Biomech. Eng. 20, 629 (1987).CrossRefGoogle ScholarPubMed
51.Yu, Q.L., Zhou, J.B., Fung, Y.C.: Neutral axis location in bending and Young's modulus of different layers of arterial wall. Am. J. Physiol. 265, H52 (1993).Google ScholarPubMed
52.Carter, F.J., Frank, T.G., Davies, P.J., McLean, D., Cuschieri, A.: Measurements and modelling of the compliance of human and porcine organs. Med. Image Anal. 5, 231 (2001).CrossRefGoogle ScholarPubMed
53.Erkamp, R.Q., Wiggins, P., Skovoroda, A.R., Emelianov, S.Y., O'Donnell, M.: Measuring the elastic modulus of small tissue samples. Ultrason. Imaging 20, 17 (1998).CrossRefGoogle ScholarPubMed
54.Hutmacher, D.W.: Scaffold design and fabrication technologies for engineering tissues: State of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 12, 107 (2001).CrossRefGoogle ScholarPubMed
55.Winter, H.H., Chambon, F.: Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J. Rheol. 30, 367 (1986).CrossRefGoogle Scholar
56.Lin, Y.G., Mallin, D.T., Chien, J.C.W., Winter, H.H.: Dynamic mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene). Macromolecules 24, 850 (1991).CrossRefGoogle Scholar
57.Richtering, H.W., Gagnon, K.D., Lenz, R.W., Fuller, R.C., Winter, H.H.: Physical gelation of a bacterial thermoplastic elastomer. Macromolecules 25, 2429 (1992).CrossRefGoogle Scholar
58.Clement, F., Johner, A., Joanny, J.F., Semenov, A.N.: Stress relaxation in telechelic gels. 1. Sticker extraction. Macromolecules 33, 6148 (2000).CrossRefGoogle Scholar
59.Nguyenmisra, M., Mattice, W.L.: Dynamics of end-associated triblock copolymer networks. Macromolecules 28, 6976 (1995).CrossRefGoogle Scholar
60.Calvet, D., Collet, A., Viguier, M., Berret, J.F., Serero, Y.: Perfluoroalkyl end-capped poly(ethylene oxide). Synthesis, characterization, and rheological behavior in aqueous solution. Macromolecules 36, 449 (2003).CrossRefGoogle Scholar
61.Durrschmidt, T., Hoffmann, H.: Organogels from ABA triblock copolymers. Colloid Polym. Sci. 279, 1005 (2001).Google Scholar
62.Castelletto, V., Hamley, I.W., Yuan, X.F., Kelarakis, A., Booth, C.: Structure and rheology of aqueous micellar solutions and gels formed from an associative poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene) triblock copolymer. Soft Matter 1(2), 138 (2005).CrossRefGoogle ScholarPubMed
63.Inomata, K., Nakanishi, D., Banno, A., Nakanishi, E., Abe, Y., Kurihara, R., Fujimoto, K., Nose, T.: Association and physical gelation of ABA triblock copolymer in selective solvent. Polym. 44, 5303 (2003).CrossRefGoogle Scholar
64.Ng, W.K., Tam, K.C., Jenkins, R.D.: Lifetime and network relaxation time of a HEUR-C20 associative polymer system. J. Rheol. 44, 137 (2000).CrossRefGoogle Scholar
65.Cathebras, N., Collet, A., Viguier, M., Berret, J.F.: Synthesis and linear viscoelasticity of fluorinated hydrophobically modified ethoxylated urethanes (F-HEUR). Macromolecules 31, 1305 (1998).CrossRefGoogle Scholar
66.Green, M.S., Tobolsky, A.V.: A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14, 80 (1946).CrossRefGoogle Scholar