Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T00:54:20.844Z Has data issue: false hasContentIssue false

Reversible grain size changes in ball-milled nanocrystalline Fe–Cu alloys

Published online by Cambridge University Press:  31 January 2011

J. Eckert
Affiliation:
W. M. Keck Laboratory of Engineering Materials 138–78, California Institute of Technology, Pasadena, California 91125
J.C. Holzer
Affiliation:
W. M. Keck Laboratory of Engineering Materials 138–78, California Institute of Technology, Pasadena, California 91125
C.E. Krill III
Affiliation:
W. M. Keck Laboratory of Engineering Materials 138–78, California Institute of Technology, Pasadena, California 91125
W.L. Johnson
Affiliation:
W. M. Keck Laboratory of Engineering Materials 138–78, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

Nanocrystalline FexCu100−x solid solutions (x < 60) with single-phase fcc structure have been prepared by mechanical alloying. The average grain size of the powders (8–20 nm) depends on the composition of the material. Varying the composition changes the grain size reversibly. This can be explained by the underlying mechanism of plastic deformation and solution hardening during mechanical alloying coupled with the recovery behavior of the material.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).CrossRefGoogle Scholar
2.Eckert, J., Schultz, L., and Urban, K., Appl. Phys. Lett. 55, 117(1988).CrossRefGoogle Scholar
3.Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
4.Eckert, J., Holzer, J. C., Krill, C. E. III, and Johnson, W. L., J. Mater. Res. 7, 1751 (1992).CrossRefGoogle Scholar
5.Schultz, L., Mater. Sci. Eng. 97, 15 (1988).CrossRefGoogle Scholar
6.Binary Alloys Phase Diagrams, 2nd ed., edited by Massalski, T. B. (ASM INTERNATIONAL, Metals Park, OH, 1990), p. 1408.Google Scholar
7.Sumiyama, K., Yoshitake, T., and Nakamura, Y., J. Phys. Soc. Jpn. 53, 3160 (1984).CrossRefGoogle Scholar
8.Chien, C. L., Liou, S. H., Kofalt, D., Yu, W., Egami, T., and McGuire, T. R., Phys. Rev. B 33, 3247 (1986).CrossRefGoogle Scholar
9.Klement, W., Jr., Trans. AIME 233, 1180 (1965).Google Scholar
10.Kajzar, F. and Parette, G., J. Appl. Phys. 50, 1966 (1979).CrossRefGoogle Scholar
11.Longworth, G. and Jain, R., J. Phys. F: Metal Physics 8, 351 (1978).CrossRefGoogle Scholar
12.Uenishi, K., Kobayashi, K. F., Nasu, S., Hatano, H., Ishihara, K. N., and Shingu, P. H., Z. Metallk. 83, 132 (1992).Google Scholar
13.Yavari, A. R. and Desre, P. J., Phys. Rev. Lett, (submitted).Google Scholar
14.Eckert, J., Birringer, R., Holzer, J. C., Krill, C. E. III, and Johnson, W. L., in Structure and Properties of Interfaces in Materials, edited by Clark, W. A. T., Briant, C. L., and Dahmen, U. (Mater. Res. Soc. Symp. Proc. 238, Pittsburgh, PA, 1992), p. 739.Google Scholar
15.Eckert, J., Holzer, J. C., Krill, C. E., III, and Johnson, W. L., J. Appl. Phys. (submitted).Google Scholar
16.Klug, H. P. and Alexander, L., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley and Sons, New York, 1974), p. 661.Google Scholar
17.Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L., Adv. Powder Metall. 1, 11 (1989).Google Scholar
18.Herr, U., Jing, J., Gonser, U., and Gleiter, H., Solid-State Commun. 76, 197 (1990).CrossRefGoogle Scholar
19.Nieh, T. G. and Wadsworth, J., Scr. Metall. Mater. 25, 955 (1991).CrossRefGoogle Scholar