Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T22:21:10.781Z Has data issue: false hasContentIssue false

Revelation of the effect of structural heterogeneity on microplasticity in bulk metallic-glasses

Published online by Cambridge University Press:  31 January 2011

Jian Lu
Affiliation:
The Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
Qing Wang
Affiliation:
The Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China; and The Institute of Materials Science, The University of Shanghai, 200072 Shanghai, People's Republic of China
Peter K. Liaw
Affiliation:
The Department of Material Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
Get access

Abstract

In this article, the shear-banding behavior in bulk metallic-glasses (BMGs) is studied using a focused ion beam (FIB)-based nanoindentation method, which involves cylindrical nanoindentation of a FIB-milled BMG microlamella and is capable of revealing the subsurface shear-band patterns down to the submicron scale. The results of the current study on a Zr-based BMG clearly show that short shear bands, with the lengths of a few hundred nanometers, could be severely kinked before growing into a longer one, which implies that structural heterogeneity plays an important role in the microplasticity of BMGs. Furthermore, through the three-dimensional finite-element simulation combined with the theoretical calculation based on the Mohr–Coulomb law, it is found that the yield strengths exhibit a large scatter as a consequence of the structural heterogeneity when microplasticity occurs in the Zr-based BMG, which is consistent with our recent findings obtained from the microcompression experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Klement, K., Willens, R.H., Duwez, P.Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960)CrossRefGoogle Scholar
2.Greer, A.L.Metallic glasses. Science 267, 1947 (1995)Google Scholar
3.Ashby, M.F., Greer, A.L.Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006)CrossRefGoogle Scholar
4.Telford, M.The case for bulk metallic glass. Mater. Today 7, 36 (2004)CrossRefGoogle Scholar
5.Argon, A.S.Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979)CrossRefGoogle Scholar
6.Johnson, W.L., Samwer, K.A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/3 temperature depedence. Phys. Rev. Lett. 95, 195501 (2005)CrossRefGoogle Scholar
7.Ye, J.C., Lu, J., Yang, Y., Liaw, P.K.Study of the intrinsic ductile to brittle transition mechanism of metallic glasses. Acta Mater. 57, 6037 (2009)CrossRefGoogle Scholar
8.Schuh, C.A., Hufnagel, T.C., Ramamurty, U.Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007)CrossRefGoogle Scholar
9.Packard, C.E., Schuh, C.Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 55, 5348 (2007)CrossRefGoogle Scholar
10.Bei, H., Lu, Z.P., George, E.P.Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter. Phys. Rev. Lett. 93, (12)125504 (2004)CrossRefGoogle ScholarPubMed
11.Schuh, C.A., Lund, A.C., Nieh, T.G.New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004)CrossRefGoogle Scholar
12.Antoniou, A., Bastawros, A.F., Lo, C.C.H., Biner, S.B.Deformation behavior of a zirconium based metallic glass during cylindrical indentation: In situ observations. Mater. Sci. Eng., A 394, 96 (2005)Google Scholar
13.Kramer, M.J., Sordelet, D.J., Bastarows, A.F., Tan, X.Absence of crystallization during cylindrical indentation of a Zr-based metallic glass. J. Non-Cryst. Solids 351, 2159 (2005)CrossRefGoogle Scholar
14.Ramamurty, U., Jana, S., Kawamura, Y., Chattopadhyay, K.Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 53, 705 (2005)CrossRefGoogle Scholar
15.Zhang, H.W., Jing, X.N., Subhash, G., Kecskes, L.J., Dowding, R.J.Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass. Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation. Acta Mater. 53, (14)3849 (2005)CrossRefGoogle Scholar
16.Antoniou, A., Bastawros, A., Biner, B.Experimental observations of deformation behavior of bulk metallic glasses during wedge-like cyclindrical indentation. J. Mater. Res. 22, (2)514 (2007)CrossRefGoogle Scholar
17.Shi, Y., Falk, M.L.Does metallic glass have a backbone? The role of percolating short range order in strength and failure. Scr. Mater. 54, 381 (2006)CrossRefGoogle Scholar
18.Su, C., Anand, L.Plane strain indentation of a Zr-based metallic glass: Experiments and numerical simulation. Acta Mater. 54, (1)179 (2006)CrossRefGoogle Scholar
19.Li, N., Liu, L., Chen, Q., Pan, J., Chan, K.C.The effect of free volume on the deformation behaviour of a Zr-based metallic glass under nanoindentation. J. Phys. D: Appl. Phys. 40, 6055 (2007)CrossRefGoogle Scholar
20.Yang, F., Geng, K., Liaw, P.K., Fan, G., Choo, H.Deformation in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during nanoindentation. Acta Mater. 55, 321 (2007)CrossRefGoogle Scholar
21.Jiang, W., Fan, G.J., Liu, F., Wang, G.Y., Choo, H., Liaw, P.K.Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass. Int. J. Plast. 24, (1)1 (2008)CrossRefGoogle Scholar
22.Lu, Y.C., Kurapati, S.N.V.R.K., Yang, F.Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes. J. Phys. D: Appl. Phys. 41, (11)115415 (2008)CrossRefGoogle Scholar
23.Pan, D., Inoue, A., Sakurai, T., Chen, M.W.Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Nat. Acad. Sci. U.S.A. 105, (39)14769 (2008)CrossRefGoogle ScholarPubMed
24.Jiang, W., Fan, G.J., Liu, F., Wang, G.Y., Choo, H., Liaw, P.Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass. Int. J. Plast. 24, 1 (2008)CrossRefGoogle Scholar
25.Zhang, H., Maiti, S., Subhash, G.Evolution of shear bands in bulk metallic glasses under dynamic loading. J. Mech. Phys. Solids 56, (6)2171 (2008)CrossRefGoogle Scholar
26.Uchic, M., Dimiduk, D.M., Florando, J.N., Nix, W.D.Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004)CrossRefGoogle ScholarPubMed
27.Yang, Y., Ye, J.C., Lu, J., Liu, F.X., Liaw, P.K.Effects of specimen geometry and base material on the mechanical behavior of focused-ion-beam-fabricated metallic-glass micropillars. Acta Mater. 57, 1613 (2009)CrossRefGoogle Scholar
28.Vaidyanathan, R., Dao, M., Ravichandran, G., Suresh, S.Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781 (2001)CrossRefGoogle Scholar
29.Schuh, C.A., Lund, A.C.Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449 (2003)Google Scholar
30.Patnaik, M.N.M., Narasimhan, R., Ramamurty, U.Spherical indentation response of metallic glasses. Acta Mater. 52, (11)3335 (2004)CrossRefGoogle Scholar
31.Dubach, A., Prasad, K.E., Raghavan, R., Loffler, J.F., Michler, J., Ramamurty, U.Free-volume dependent pressure sensitivity of Zr-based bulk metallic glass. J. Mater. Res. 24, (8)2697 (2009)CrossRefGoogle Scholar
32.Ye, J.C., Lu, J., Yang, Y., Liaw, P.K.Extraction of bulk metallic-glass yield strengths using tapered micropillars in micro-compression experiments. Intermetallics 18, 385 (2010)CrossRefGoogle Scholar
33.Fischer Cripps, A.C.Introduction to Contact Mechanics (Springer, New York 2000)Google Scholar
34.Antoniou, A., Bastarows, A., Biner, B.Experimental observations of deformation behavior of bulk metallic glasses during wedge-like cylindrical indentation. J. Mater. Res. 22, (2)514 (2007)CrossRefGoogle Scholar
35.Yang, F., Li, D., Yang, M.L., Li, R., Jiang, W., Wang, G., Zhang, T., Liaw, P.K.Localized deformation of a Cu46.25Zr45.25Al7.5Er1 bulk metallic glass. J. Phys. D: Appl. Phys. 42, 065401 (2009)CrossRefGoogle Scholar
36.Martin, M., Kecskes, L., Thadhani, N.N.Dynamic compression of a zirconium-based bulk metallic glass confined by a stainless steel sleeve. Scr. Mater. 59, 688 (2008)CrossRefGoogle Scholar
37.Shi, Y., Falk, M.L.Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55, 4317 (2007)Google Scholar
38.Schuster, B.E., Wei, Q., Hufnagel, T.C., Ramesh, K.T.Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater. 56, 5091 (2008)CrossRefGoogle Scholar
39.Schuster, B.E., Wei, Q., Ervin, M.H., Hruszkewycz, S.O., Miller, M.K., Hufnagel, T.C., Ramesh, K.T.Bulk and microscale compressive properties of a Pd-based metallic glass. Scr. Mater. 57, 517 (2007)Google Scholar
40.Dubach, A., Raghavan, R., Loffler, J.F., Michler, J., Ramamurty, U.Micropillar compression studies on a bulk metallic glass in different structural states. Scr. Mater. 60, 567 (2009)CrossRefGoogle Scholar
41.Volkert, C.A., Donohue, A., Spaepen, F.Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 083539 (2008)CrossRefGoogle Scholar
42.Lai, Y.H., Lee, C.J., Cheng, Y.T., Chou, H.S., Chen, H.M., Du, X.H., Chang, C.I., Huang, J.C., Jian, S.R., Jang, J.S.C., Nieh, T.G.Bulk and microscale compressive behavior of a Zr-based metallic glass. Scr. Mater. 58, 890 (2008)CrossRefGoogle Scholar
43.Lee, C.J., Huang, J.C., Nieh, T.G.Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass. Appl. Phys. Lett. 91, 161913 (2007)CrossRefGoogle Scholar
44.Harmon, J.S., Demetriou, D.M., Johnson, W.L., Samwer, K.Anelastic to plastic transition in metallic glass-forming liquids. Phys. Rev. Lett. 99, 135502 (2007)CrossRefGoogle ScholarPubMed
45.Kim, J-J., Choi, Y., Suresh, S., Argon, A.S.Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002)Google Scholar
46.Wang, K., Fujita, T., Zeng, Y.Q., Nishiyama, N., Inoue, A., Chen, M.W.Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a large compression plasticity. Acta Mater. 56, 2834 (2008)CrossRefGoogle Scholar
47.Hajlaoui, K., Yavari, A.R., Doisneau, B., LeMoulec, A., Botta, W.J., Vaughan, G., Greer, A.L., Inoue, A., Zhang, W., Kvick, A.Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scr. Mater. 54, 1829 (2006)CrossRefGoogle Scholar
48.Sun, B.B., Wang, Y.B., Wen, J., Yang, H., Sui, M.L., Wang, J.Q., Ma, E.Artifacts induced in metallic glasses during TEM sample preparation. Scr. Mater. 53, 805 (2005)CrossRefGoogle Scholar
49.Shimizu, F., Ogata, S., Li, J.Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans., JIM 48, (11)2923 (2007)Google Scholar
50.Shimizu, F., Ogata, S., Li, J.Yield point of metallic glass. Acta Mater. 54, 4293 (2006)CrossRefGoogle Scholar