Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T21:03:41.638Z Has data issue: false hasContentIssue false

Resonant Bragg structures based on III-nitrides

Published online by Cambridge University Press:  05 February 2015

Andrey S. Bolshakov
Affiliation:
The Ioffe Institute, St. Petersburg 194021, Russia; and St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
Vladimir V. Chaldyshev*
Affiliation:
The Ioffe Institute, St. Petersburg 194021, Russia; and St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
Wsevolod V. Lundin
Affiliation:
The Ioffe Institute, St. Petersburg 194021, Russia; and St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
Alexey V. Sakharov
Affiliation:
The Ioffe Institute, St. Petersburg 194021, Russia; and St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
Andrey F. Tsatsulnikov
Affiliation:
The Ioffe Institute, St. Petersburg 194021, Russia; and St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
Maria A. Yagovkina
Affiliation:
The Ioffe Institute, St. Petersburg 194021, Russia; and St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
Evgenii E. Zavarin
Affiliation:
The Ioffe Institute, St. Petersburg 194021, Russia; and St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We demonstrate a resonant Bragg structure formed by quasi-two-dimensional excitons in periodic systems of InGaN quantum wells (QWs) separated by GaN barriers. When the Bragg resonance and exciton–polariton resonance are tuned to each other, the medium exhibits an exciton-mediated resonantly enhanced optical Bragg reflection. The enhancement factor appeared to be largest for the system of 60 QWs. Owing to a high binding energy and oscillator strength of the excitons in InGaN QWs, the resonant enhancement was achieved at room temperature. The samples were grown by the metal–organic vapor-phase epitaxy (MOVPE) on GaN-on-sapphire templates. The most important technological problem of the developed structures is inhomogeneous broadening of the excitonic states due to nonuniform chemical composition of the QWs driven by InN–GaN phase separation trend. We addressed this problem by variation of the vapor pressure, growth rate, growth interactions, and admixing of hydrogen during the MOVPE. The lowest width of 74 meV at room temperature and 41 meV at 77 K was achieved for the excitonic emission line from a single InGaN QW.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ivchenko, E.L., Nesviszhskii, A.I., and Jorda, S.: Bragg reflection of light from quantum-well structures. Phys. Solid State 36, 1156 (1994).Google Scholar
Chaldyshev, V.V., Bolshakov, A.S., Zavarin, E.E., Sakharov, A.V., Lundin, W.V., Tsatsulnikov, A.F., Yagovkina, M.A., Kim, T., and Park, Y.: Optical lattices of InGaN quantum well excitons. Appl. Phys. Lett. 99, 251103 (2011).Google Scholar
Bolshakov, A.S., Chaldyshev, V.V., Zavarin, E.E., Sakharov, A.V., Lundin, W.V., Tsatsulnikov, A.F., and Yagovkina, M.A.: Resonance Bragg structure with double InGaN quantum wells. Phys. Solid State 55, 18171820 (2013).Google Scholar
Moram, M.A., Oliver, R.A., Kappers, M.J., and Humphreys, C.J.: The spatial distribution of threading dislocations in gallium nitride films. Adv. Mater. 21, 39413944 (2009).Google Scholar
Choi, Y-S., Park, J-H., Kim, S-S., Song, H-J., Lee, S-H., Jung, J-J., and Lee, B-T.: Effects of dislocations on the luminescence of GaN/InGaN multi-quantum-well light-emitting-diode layers. Mater. Lett. 58, 26142617 (2004).Google Scholar
Kumar, M., Park, J., Lee, Y., Chung, S., Hong, Ch., and Suh, E.: Improved internal quantum efficiency of green emitting InGaN/GaN multiple quantum wells by in preflow for InGaN well growth. Jpn. J. Appl. Phys. 47, 839842 (2008).Google Scholar
Musikhin, Yu., Gerthsen, D., Bedarev, D., Bert, N., Lundin, W., Tsatsul’nikov, A., Sakharov, A., Usikov, A., Alferov, Zh., Krestnikov, I., Ledentsov, N., Hoffmann, A., and Bimberg, D.: Influence of metalorganic chemical vapor deposition growth conditions on In-rich nanoislands formation in InGaN/GaN structures. Appl. Phys. Lett. 80, 20992101 (2002).CrossRefGoogle Scholar
Shim, H., Choi, R., Jeong, S., Vinh, L., Hong, C-H., Suh, E-K., Lee, H., Kim, Y-W., and Hwang, Y.: Influence of the quantum-well shape on the light emission characteristics of InGaN/GaN quantum-well structures and light-emitting diodes. Appl. Phys. Lett. 81, 35523554 (2002).CrossRefGoogle Scholar
Soh, C., Liu, W., Teng, J., Chow, S., Ang, S., and Chua, S.: Cool white III-nitride light emitting diodes based on phosphor-free indium-rich InGaN nanostructures. Appl. Phys. Lett. 92, 261909261911 (2008).Google Scholar
Sun, Y., Choa, Y-H., Suh, E-K., Lee, H., Choi, R., and Hahn, Y.: Carrier dynamics of high-efficiency green light emission in graded-indium-content InGaN/GaN quantum wells: An important role of effective carrier transfer. Appl. Phys. Lett. 84, 4951 (2004).CrossRefGoogle Scholar
Choi, S-K., Jang, J-M., Yi, S-H., Kim, J-A., and Jung, W-G.: Fabrication and characterization of self-assembled InGaN quantum dots by periodic interrupted growth. Proc. SPIE 6479, 64791F (2007).Google Scholar
Ji, L., Su, Y., Chang, S., Tsai, S., Hung, S., Chuang, R., Fang, Т., and Tsai, T.: Growth of InGaN self-assembled quantum dots and their application to photodiodes. J. Vac. Sci. Technol., A 22, 792795 (2004).Google Scholar
Oliver, R., Briggs, G., Kappers, M., Humphreys, C., Yasin, Sh., Rice, J., Smith, J., and Taylor, R.: InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal. Appl. Phys. Lett. 83, 755757 (2003).CrossRefGoogle Scholar
Wang, Q., Wang, T., Bai, J., Cullis, A., Parbrook, P., and Ranalli, F.: Growth and optical investigation of self-assembled InGaN quantum dots on a GaN surface using a high temperature AlN buffer. J. Appl. Phys. 103, 123522123528 (2008).Google Scholar
Wen, T-Ch., Lee, Sh-Ch., and Lee, W-I.: Light-emitting diodes: Research, manufacturing, and applications. Proc. SPIE 4278, 141149 (May 2001).CrossRefGoogle Scholar
Tsatsulnikov, A.F., Lundin, W.V., Zavarin, E.E., Nikolaev, A.E., Sakharov, A.V., Sizov, V.S., Usov, S.O., Musikhin, Yu.G., and Gerthsen, D.: Influence of hydrogen on local phase separation in InGaN thin layers and properties of light-emitting structures based on them. Semiconductors 45, 271276 (2011).Google Scholar
Tsatsulnikov, A.F. and Lundin, W.V.: Stimulated formation of InGaN quantum dots. State-of-the-Art of Quantum Dot System Fabrications, Dr. Ameenah Al-Ahmadi, ed.; ISBN: 978-953-51-0649-4, InTech, DOI: 10.5772/45971. Available from: http://www.intechopen.com/books/state-of-the-art-of-quantum-dot-system-fabrications/stimulated-formation-of-ingan-quantum-dots, 2012.Google Scholar
Petrosyan, S.G., Chaldyshev, V.V., and Shik, A.Y.: Luminescence of inhomogeneous semiconducting solid-solutions. Sov. Phys. Semicond. 18, 980984 (1984).Google Scholar
Sanford, N.A., Munkholm, A., Krames, M.R., Shapiro, A., Levin, I., Davydov, A.V., Sayan, S., Wielunski, L.S., and Madey, T.E.: Refractive index and birefringence of InxGa1–xN films grown by MOCVD. Phys. Status Solidi C 2(7), 27832786 (2005).Google Scholar
Leung, M.M.Y., Djurisic, A.B., and Li, E.H.: Refractive index of InGaN/GaN quantum well. J. Appl. Phys. 84(11), 6312 (1998).Google Scholar
Hayes, G.R., Staehli, J.L., Oesterle, U., Deveaud, B., Phillips, R.T., and Ciuti, C.: Suppression of exciton-polariton light absorption in multiple quantum well Bragg structures. Phys. Rev. Lett. 83, 2837 (1999).CrossRefGoogle Scholar
Hübner, M., Prineas, J.P., Ell, C., Brick, P., Lee, E.S., Khitrova, G., Gibbs, H.M., and Koch, S.W.: Optical lattices achieved by excitons in periodic quantum well structures. Phys. Rev. Lett. 83, 2841 (1999).Google Scholar
Goldberg, D., Deych, L.I., Lisyansky, A.A., Shi, Zh., Menon, V.M., Tokranov, V., Yakimov, M., and Oktyabrsky, S.: Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nat. Photonics 3, 662 (2009).Google Scholar
Chaldyshev, V.V., Kundelev, E.V., Nikitina, E.V., Egorov, A.Yu., and Gorbatsevich, A.A.: Resonance reflection of light by a periodic system of excitons in GaAs/AlGaAs quantum wells. Semiconductors 46(8), 10161019 (2012).CrossRefGoogle Scholar