Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T01:33:29.023Z Has data issue: false hasContentIssue false

Relationship between the structural organization and the physical properties of PECVD nitrogenated carbons

Published online by Cambridge University Press:  31 January 2011

M. Ricci
Affiliation:
CNRS, Centre de Recherche Paul Pascal, Avenue du Dr. Albert Schweitzer, 33600 Pessac, France
M. Trinquecoste
Affiliation:
CNRS, Centre de Recherche Paul Pascal, Avenue du Dr. Albert Schweitzer, 33600 Pessac, France
F. Auguste
Affiliation:
CNRS, Centre de Recherche Paul Pascal, Avenue du Dr. Albert Schweitzer, 33600 Pessac, France
R. Canet
Affiliation:
CNRS, Centre de Recherche Paul Pascal, Avenue du Dr. Albert Schweitzer, 33600 Pessac, France
P. Delhaes
Affiliation:
CNRS, Centre de Recherche Paul Pascal, Avenue du Dr. Albert Schweitzer, 33600 Pessac, France
C. Guimon
Affiliation:
Laboratoire de Physico-Chimie Moléculaire, Université de Pau et des Pays de l'Adour, 64000 Pau, France
G. Pfister-Guillouzo
Affiliation:
Laboratoire de Physico-Chimie Moléculaire, Université de Pau et des Pays de l'Adour, 64000 Pau, France
B. Nysten
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, 1, Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgique
J.P. Issi
Affiliation:
Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, 1, Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgique
Get access

Abstract

By a Plasma Enhanced Chemical Vapor Deposition process (PECVD), we are able to prepare nitrogenated amorphous carbon materials around room temperature from methane and nitrogen gas as precursors. We have also used chlorine gas as an additive to reduce the hydrogen content of our samples. Starting from the “as-deposited” materials, we have investigated their thermal stability by successive heat treatments up to 1400 °C. These compounds suffer a weight loss mostly due to the hydrogen departure. They become nonfusible and it turns out that nitrogen, chemically bound to sp2 hybridized carbons, induces some changes in the physical properties. In order to understand the relationship between the local structural organization and the physical characteristics, we have investigated different spectroscopic techniques such as Nuclear Magnetic Resonance, IR Absorption, and X-ray Photoelectron Spectroscopy. We have also investigated several transport properties: (i) The dc electrical conductivity shows a kind of metal/insulator transition around 700 °C. The temperature dependence for the conductive samples gives evidence for a pseudogap associated with the presence of localized states, (ii) The thermal conductivity exhibits, for the as-deposited compound, a very low value varying slowly with temperature; its magnitude as well as its temperature dependence, characteristic of noncrystalline materials, are modified by the annealing process. Finally, an electronic band model is proposed, explaining the structural evolution through a kind of Mott–Anderson pseudotransition.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Spitsyn, B. V., Bouilov, L. L., and Derjaguin, B. V., Prog. Cryst. Growth Charact. 17, 79170 (1988).CrossRefGoogle Scholar
2Kaufman, J. H., Metin, S., and Saperstein, D. D., Phys. Rev. B 39, 1305313060 (1989).CrossRefGoogle Scholar
3Han, H.X. and Feldman, B.J., Solid State Commun. 65, 921923 (1988).CrossRefGoogle Scholar
4Ricci, M., Trinquecoste, M., and Delhaes, P., Surf. Coatings Technol. 47, 299307 (1991).CrossRefGoogle Scholar
5Ricci, M., Ph.D. Thesis, University of Bordeaux I (1991).Google Scholar
6Kaplan, S., Jansen, F., and Machonkin, M., Appl. Phys. Lett. 47, 750753 (1985).CrossRefGoogle Scholar
7Pan, H., Pruski, M., Gerstein, B. L., Li, F., and Lannin, J. S., Phys. Rev. B 44, 67416745 (1991).CrossRefGoogle Scholar
8Derenne, S., Largeau, C., Casadevall, E., and Laupretre, F., J. Chim. Phys. 84, 1016 (1987).Google Scholar
9Sette, F., Wertheim, G. K., Ma, Y., Heigs, G., Modesti, S., and Chen, C. T., Phys. Rev. B 41, 97669770 (1990).CrossRefGoogle Scholar
10Estrade-Szwarckoff, H. and Rousseau, B., J. Phys. Chem. Solids 53, 419436 (1992).CrossRefGoogle Scholar
11Wells, S. K., Giergel, J., Land, T.A., Lindquist, J.M., and Hemminger, J. C., Surf. Sci. 257, 129145 (1991).CrossRefGoogle Scholar
12Carmona, F. and Delhaes, P., J. Appl. Phys. 49, 618628 (1978).CrossRefGoogle Scholar
13Mott, N.F., Philos. Mag. B 44, 265284 (1981).CrossRefGoogle Scholar
14Frauenheim, T., Stephan, U., Bewiloga, K., Jungnickel, F., Blaudeck, P., and Fromm, E., Thin Solid Films 182, 6378 (1989).CrossRefGoogle Scholar
15Hauser, J.J., J. Non-Cryst. Solids 23, 2141 (1977).CrossRefGoogle Scholar
16Carmona, F., Delhaes, P., Keryer, G., and Manceau, J. P., Solid State Commun. 14, 11831187 (1974).CrossRefGoogle Scholar
17Piraux, L., Issi, J. P., and Coopmans, P., Measurement 5, 2 (1987).CrossRefGoogle Scholar
18Elliott, S. R., Physics of Amorphous Materials (Longman Scientific & Technical, London, England, 1983).Google Scholar
19Gardner, J. W. and Anderson, A. C., J. Appl. Phys. 50, 30123014 (1978).CrossRefGoogle Scholar
20Nysten, B., Issi, J. P., Barton, R., Boyington, D. R., and Lavin, J. G., Phys. Rev. B 44, 21422148 (1991).CrossRefGoogle Scholar
21Delhaes, P. and Hishiyama, Y., Carbon 8, 3137 (1970).CrossRefGoogle Scholar
22Kaburagi, Y., Hishiyama, Y., Baker, D. F., and Bragg, R. H., Philos. Mag. B 54, 381389 (1986).CrossRefGoogle Scholar
23Liu, A.Y. and Cohen, M.L., Phys. Rev. B 41, 1072710734 (1990).CrossRefGoogle Scholar