Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T17:35:32.592Z Has data issue: false hasContentIssue false

Rate- and depth-dependent nanomechanical behavior of individual living Chinese hamster ovary cells probed by atomic force microscopy

Published online by Cambridge University Press:  01 August 2006

Minhua Zhao
Affiliation:
Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269
Charudharshini Srinivasan
Affiliation:
School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269
Diane J. Burgess
Affiliation:
School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269
Bryan D. Huey*
Affiliation:
Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A single elastic modulus is not sufficient for describing the mechanical behavior of a living cell due to its viscoelastic nature and heterogeneity beneath the membrane. In this paper, the nanoscale elastic and viscoelastic behavior of individual living Chinese hamster ovary (CHO-K1) cells in a physiological environment were probed by atomic force microscopy (AFM) indentations at various loading rates. Based on Hertzian fits of the force–distance curves, the apparent elastic modulus of the cells was determined and found to be a function of the loading rate as well as the indentation depth. Notably, contributions from the substrate were negligible up to 50% of the cell thickness. For increased indentation rates and depths, healthy spindle-shaped CHO-K1 cells were found to exhibit an increased change of stiffness, whereas for unhealthy oval- shaped CHO-K1 cells there was little stiffening at equivalent loading rates and depths. Furthermore, a larger hysteresis between the loading and unloading curves was observed with increasing loading rates, which was related to the viscoelastic behavior of CHO-K1 cells. This work demonstrates differences in the rate- and depth-dependent elastic behavior at the nanoscale level between healthy and unhealthy mammalian cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Radmacher, M., Tillmann, R.W., Fritz, M., Gaub, H.E.: From molecules to cells: Imaging soft samples with the atomic force microscope. Science 257, 1900 (1992).CrossRefGoogle ScholarPubMed
2.Huang, H., Kamm, R., Lee, R.: Cell mechanics and mechanotransduction: Pathways, probes, and physiology. Am. J. Physiol. 287, 1 (2004).Google Scholar
3.Bao, G., Suresh, S.: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715 (2003).CrossRefGoogle ScholarPubMed
4.Charras, G., Horton, M.: Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82, 2970 (2002).Google Scholar
5.Ikai, A., Afrin, R.: Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope: An invited review. Cell Biochem. Biophys. 39, 257 (2003).CrossRefGoogle ScholarPubMed
6.Vliet, K., Bao, G., Suresh, S.: The biomechanics toolbox: Experimental approaches for living cells and biomolecules. Acta Mater. 51, 5881 (2003).CrossRefGoogle Scholar
7.Zhu, C., Bao, G., Wang, N.: Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Ann. Rev. Biomed. Eng. 2, 189 (2000).CrossRefGoogle ScholarPubMed
8.Kasas, S., Wang, X., Hirling, H., Marsault, R., Huni, B., Yersin, A., Regazzi, R., Grenningloh, G., Riederer, B.: Superfical and deep changes of celluar mechanical properties following cytoskeleton disassembly. Cell Motil. Cytoskeleton 62, 124 (2005).CrossRefGoogle Scholar
9.Braet, F., Rotsch, C., Wisse, E., Radmacher, M.: Comparison of fixed and living liver endothelial cells by atomic force microscopy. Appl. Phys. A 66, S575 (1998).Google Scholar
10.Takai, E., Costa, K., Shaheen, A., Hung, C., Guo, X.: Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann. Biomed. Eng. 33, 963 (2005).Google Scholar
11.Rotsch, C., Jacobson, K., Radmacher, M.: Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 921 (1999).CrossRefGoogle ScholarPubMed
12.Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T., Sambongi, T.: Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82, 253 (2000).CrossRefGoogle ScholarPubMed
13.Mathur, A., Truskey, G., Reichert, W.: Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys. J. 78, 1725 (2000).CrossRefGoogle Scholar
14.Matzke, R., Jacobson, K., Radmacher, M.: Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat. Cell Biol. 3, 607 (2001).CrossRefGoogle ScholarPubMed
15.Haydon, P., Lartius, R., Parpura, V., Marchese-Ragona, S.: Membrane deformation of living glial cells using atomic force microscopy. J. Microsc. 182, 114 (1996).Google Scholar
16.Lee, I., Marchant, R.: Force measurements on platelet surfaces with high spatial resolution under physiological conditions. Colloids Surf. B Biointerfaces 19, 357 (2000).CrossRefGoogle ScholarPubMed
17.Rotsch, C., Radmacher, M.: Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys. J. 78, 520 (2000).CrossRefGoogle ScholarPubMed
18.McElfresh, M., Baesu, E., Balhorn, R., Belak, J., Allen, M.J., Rudd, R.E.: Combining constitutive materials modeling with atomic force microscopy to understand the mechanical properties of living cells. Proc. Natl. Acad. Sci. USA 99, 6493 (2002).Google Scholar
19.Hutter, J., Chen, J., Wan, W.K., Uniyal, S., Leabu, M., Chan, B.M.C.: Atomic force microscopy investigation of the dependence of cellular elastic moduli on glutaraldehyde fixation. J. Microsc. 219, 61 (2005).CrossRefGoogle ScholarPubMed
20.Pelling, A., Li, Y., Shi, W., Gimzewski, J.: Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc. Natl. Acad. Sci. USA 102, 6484 (2005).Google Scholar
21.A-Hassan, E., Heinz, W.F., Antonik, M.D., D’Costa, N.P., Nageswaran, S., Schoenberger, C.A., Hoh, J.H.: Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74, 1564 (1998).Google Scholar
22.Sen, S., Subramanian, S., Discher, D.: Indentation and adhesive probing a cell membrane with AFM: Theoretical model and experiments. Biophys. J. 89, 3203 (2005).CrossRefGoogle ScholarPubMed
23.Tai, K.S., Qi, H.J., Ortiz, C.: Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. J. Mater. Sci.: Mater. Med. 16, 947 (2005).Google Scholar
24.Hategan, A., Law, R., Kahn, S., Discher, D.: Adhesively tensed cell membranes: Lysis kinetics and atomic force microscopy probing. Biophys. J. 85, 2746 (2003).Google Scholar
25.Heidemann, S., Wirtz, D.: Towards a regional approach to cell mechanics. Trends Cell Biol. 14, 160 (2004).CrossRefGoogle ScholarPubMed
26.Wu, H., Moy, V.: Mechanical properties of L929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20, 389 (1998).CrossRefGoogle ScholarPubMed
27.Beil, M., Micoulet, A., Wichert, G.V., Paschke, S., Walther, P., Omary, M.B., Veldhoven, P.P.V., Gern, U., Wolf-Hieber, E., Eggermann, J., Waltenberger, J., Adler, G., Spatz, J., Seufferlein, T.: Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat. Cell Biol. 5, 803 (2003).CrossRefGoogle ScholarPubMed
28.Yamada, S., Wirtz, D., Kuo, S.C.: Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736 (2000).Google Scholar
29.Mathur, A., Collinsworth, A., Reichert, W., Kraus, W., Truskey, G.: Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34, 1545 (2001).Google Scholar
30.Rico, F., Roca-Cusachs, P., Gavara, N., Farre, R., Rotger, M., Navajas, D.: Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E 72, 021914 (2005).CrossRefGoogle ScholarPubMed
31.Alcaraz, J., Buscemi, L., Grabulosa, M., Trepat, X., Fabry, B., Farre, R., Navajas, D.: Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84, 2071 (2003).Google Scholar
32.Tsui, T., Pharr, G.: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrate. J. Mater. Res. 14, 292 (1999).Google Scholar
33.Domke, J., Radmacher, M.: Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14, 3320 (1998).Google Scholar
34.Berdyyeva, T., Woodworth, C., Sokolov, I.: Human epithelial cells increase their rigidity with ageing in vitro: Direct measurements. Phys. Med. Biol. 50, 81 (2005).Google Scholar
35.Costa, K.: Single-cell elastography: Probing for disease with the atomic force microscope. Dis. Markers 19, 139 (2003).CrossRefGoogle ScholarPubMed
36.Suresh, S., Spatz, J., Mills, J.P., Micoulet, A., Dao, M., Lim, C.T., Beil, M., Seufferlein, T.: Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 1, 15 (2005).Google Scholar
37.Stoffels, E., Kieft, I., Sladek, R.: Superfical treatment of mammalian cells using plasma needle. J. Phys. D: Appl. Phys. 36, 2908 (2003).CrossRefGoogle Scholar
38.Costa, K., Yin, F.: Analysis of indentation: Implications for measuring mechical properties with atomic force microscopy. J. Biomech, Eng. Trans. ASME 121, 462 (1999).Google Scholar
39.Dimitriadis, E., Horkay, F., Maresca, J., Kachar, B., Chadwick, R.: Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798 (2002).Google Scholar