Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T03:39:05.585Z Has data issue: false hasContentIssue false

Preparation and coating of molybdenum oxide on alumina submicrospheres by sonochemical method

Published online by Cambridge University Press:  31 January 2011

Z. Y. Zhong
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900 Israel
Y. Mastai
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100 Israel
R. A. Salkar
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900 Israel
Y. Koltypin
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900 Israel
A. Gedanken*
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900 Israel
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

In this work, we coated molybdenum oxide on submicrospheres of amorphous alumina and crystalline alumina, using a sonochemical method. The sonication products were characterized by transmission electron microscopy, x-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, ultraviolet–visible, Raman, Fourier transform infrared spectroscopy, and surface area (Brunauer–Emmett–Teller) measurements. We found that on crystalline alumina, the blue oxide of molybdenum was formed, while on amorphous alumina, the presence of an isolated tetrahedrally coordinated Mo oxide species was confirmed. It seems that the amount and types of surface hydroxyl groups on the surface of alumina play an important role in both the oxidation of Mo and the relative content of Mo species in the sonication product. The surface area of the alumina-coated Mo oxide is about 11 times larger than that of the bare alumina. An explanation for this change is offered.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shannon, I.J., Maschmeyer, T., Oldroyd, R.D., Sankar, G., Thomas, J.M., Pernot, H., Balikdjian, J.P., and Che, M., J. Chem. Soc., Faraday Trans. 94, 1495 (1998).CrossRefGoogle Scholar
2.Mendelelovici, L. and Lunsford, J.H., J. Catal. 94, 37 (1985).CrossRefGoogle Scholar
3.Lin, H.F., Liu, R.S., Liew, K.Y., Johnson, R.E., and Lunsford, J.H., J. Am. Chem. Soc. 106, 4117 (1984).Google Scholar
4.Walker, J.F., in Formaldehyde, edited by Krieger, R.E. (Reinhold, New York, 1964), pp. 2729.Google Scholar
5.Bihan, L.L., Blanchard, P., Fourinier, M., Grimblot, J., and Payen, E., J. Chem. Soc., Faraday Trans. 94, 937 (1998), p. 27.CrossRefGoogle Scholar
6.Knozinger, H., In Proceedings of the 9th International Congress on Catalysis, edited by Philips, M.J. and Ternan, M. (Chemical Institute of Canada, Ottawa, Ontario, 1988), Vol. 5, p. 20.Google Scholar
7.Williams, C.C., Ekerdt, J.G., Jehng, J.M., Hardcasttle, F.D., Turek, A.M., and Wachs, I.E., J. Phys. Chem. 95, 878 (1991).Google Scholar
8.Iwasawa, Y., in Advances in Catalysis (Academic Press, New York, 1987), Vol. 35, p. 187.Google Scholar
9.Che, M. and Louis, C., J. Phys. Chem. 91, 2875 (1987).Google Scholar
10.Yermakow, Y.I., Catal. Rev.—Sci. Eng. 13, 77 (1976).Google Scholar
11.Wang, L. and Hall, W.K., J. Catal. 77, 232 (1982).Google Scholar
12.Prinetto, F., Cerrato, G., Ghiotti, G., Chiorino, A., Campa, M.C., Gazzoli, D., and Indovina, V., J. Phys. Chem. 99, 5556 (1995).CrossRefGoogle Scholar
13.Suslick, K.S., Choe, S.B., Gicholowlas, A.A., and Grinstaff, M.W., Nature 353, 414 (1991).CrossRefGoogle Scholar
14.Grinstaff, M.W., Salamon, M.B., and Suslick, K.S., Phys. Rev. B 48, 269 (1993).CrossRefGoogle Scholar
15.Hyon, T., Fang, M.M., and Suslick, K.S., J. Am. Chem. Soc. 118, 5492 (1996).Google Scholar
16.Arul Dhas, N. and Gedanken, A., Chem. Mater. 9, 3144 (1997).CrossRefGoogle Scholar
17.Arul Dhas, N. and Gedanken, A., J. Phys. Chem. B 101, 94959 (1997).CrossRefGoogle Scholar
18.Suslick, K.S., Science, 247, 1439 (1990).CrossRefGoogle Scholar
19.Ramesh, S., Prozorov, R., and Gedanken, A., Chem. Mater. 9, 2996 (1997).Google Scholar
20.Ogihara, T., Nakajima, H., Yanagawa, T., Ogata, N., Yoshida, K., and Matsushita, N., J. Am. Ceram. Soc. 74, 2263 (1991).CrossRefGoogle Scholar
21.Zhong, Z., Zhao, Y., Koltypin, Y., and Gedanken, A., J. Mater. Chem. 8, 2167 (1998);CrossRefGoogle Scholar
Zhong, Z.Y., Prozorov, T., Felner, I., and Gedanken, A., J. Phys. Chem. 103, 947 (1999).CrossRefGoogle Scholar
22.Cotton, F.A. and Wilkinson, G., in Advanced Inorganic Chemistry, 3rd ed. (Interscience Publishers, John Wiley and Sons, New York, 1972), p. 944.Google Scholar
23.Kim, D.S., Seg, K., Soeya, T., and Wachs, I.E., J. Catal. 136, 539 (1992).Google Scholar
24.Hucul, D.A. and Brener, A., J. Phys. Chem. 85, 496 (1981).CrossRefGoogle Scholar
25.Hu, H., Wachs, I.E., and Bare, S.R., J. Phys. Chem. 99, 10897 (1995).CrossRefGoogle Scholar
26.Medema, J., Van Stam, C., de Beer, V.H.J., Konings, A.J., and Konigsberger, D.C., J. Catal. 53, 386 (1978).Google Scholar
27.Knozinger, H. and Jeziorowski, H., J. Phys. Chem. 82, 2002 (1978).CrossRefGoogle Scholar
28.Jeziorowski, H. and Knozinger, H., J. Phys. Chem. 83, 1166 (1979).Google Scholar
29.Wang, L. and Hall, W.K., J. Catal. 83, 242 (1983).CrossRefGoogle Scholar
30.Zingg, D.S., Makovsky, L.E., Tischer, R.E., Brown, F.R., and Hercules, D.M., J. Phys. Chem. 84, 2898 (1980).CrossRefGoogle Scholar
31.Carbucicchio, M., J. Chem. Phys. 70, 784 (1979).CrossRefGoogle Scholar
32.Carrier, X., Lambert, J.F., and Che, M., J. Am. Chem. Soc. 119, 10137 (1997).Google Scholar
33.Greenblatt, M., Chem. Rev. 88, 31 (1988).Google Scholar
34.Hu, H. and Wachs, I.E., J. Phys. Chem. 99, 10911 (1995).Google Scholar
35.Mestl, G., Ruiz, P., Delmon, B., and Knozinger, H., J. Phys. Chem. 98, 11269 (1994).Google Scholar
36.Muller, A., Weinstock, N., Mohan, W., Schlapfer, C.W., and Nakampto, K., Appl. Spectrosc. 27, 25 (1973).Google Scholar
37.Vuurman, M.A., Stufkenes, D.J., Oskam, A., Deo, G., and Wachs, I.E., J. Chem. Soc., Faraday Trans. 92, 3259 (1996).CrossRefGoogle Scholar
38.Liu, X. and Truitt, R.E., J. Am. Chem. Soc. 119, 9856 (1997).Google Scholar
39.Morterra, C.C. and Magnacca, G., Catal. Today 27, 497 (1996).CrossRefGoogle Scholar