Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T03:42:31.907Z Has data issue: false hasContentIssue false

Predicting the figure of merit of nanostructured thermoelectric materials

Published online by Cambridge University Press:  11 September 2015

Terence Musho*
Affiliation:
Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Over the last decade, the inclusion of nanofeatures has been demonstrated extensively for improving the performance of thermoelectric materials. The continued approach is to nanofeaturing these materials in a smart manner tailoring their electronic and thermal response. This research provides a computational tool for predicting all parameters in the thermoelectric figure of merit for a Si/Ge superlattice structure as a function of doping and layer thickness. The approach involves coupling a nonequilibrium Green's function electronic and thermal transport model. The phonon description is communicated between the two models to facilitate spatially resolved multiphonon frequency electron–phonon scattering. Findings support the consideration of multiple phonon frequency scattering to accurately predict ZT values. An extrema in ZT as function of both doping and geometry were predicted. Furthermore, the optimal superlattice design was determined to be a Si(2 nm)/Ge(7 nm) with a donor concentration on the order of 1019 cm−3 for operation at 300 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, Y., Li, D., Lukes, J.R., Ni, Z., and Chen, M.: Minumum superlattice thermal conductivity from molecular dynamics. Phys. Rev. B 72, 16 (2005).CrossRefGoogle Scholar
Lee, S.M., Matamis, G., and Cahill, D.G.: Thin-film materials and minimum thermal conductivity. Microscale Thermophys. Eng. 2, 3136 (1998).Google Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597602 (2001).Google Scholar
Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., and Majumdar, A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).Google Scholar
Bian, Z., Zebarjadi, M., Singh, R., Ezzahri, Y., Shakouri, A., Zeng, G., Bahk, J-H., Bowers, J.E., Zide, J.M.O., and Gossard, A.C.: Cross-plane seebeck coefficient and lorenz number in superlattices. Phys. Rev. B 76, 205311 (2007).Google Scholar
Zhang, W., Fisher, T.S., and Mingo, N.: The atomistic green’s function method: An efficient simulation approach for nanoscale phonon transport. Numer. Heat Transfer, Part B 51(4), 333349 (2007).Google Scholar
Musho, T. and Walker, D.: Thermoelectric properties of superlattice materials with variably spaced layers. J. Mater. Res. 26(15), 19932000 (2011).Google Scholar
Koga, T., Cronin, S.B., Dresselhaus, M.S., Liu, J.L., and Wang, K.L.: Experimental proof-of-principle investigation of enhanced Z 3DT in (001) oriented Si/Ge superlattices. Appl. Phys. Lett. 77, 14901492 (2000).CrossRefGoogle Scholar
Liu, W.L., Chen, G., Liu, J.L., and Wang, K.L.: Quantum and classical size effects on thermoelectric transport in Si/Ge superlattices. In Proceedings of the 21st International Conference on Thermoelectrics (ICT), 2002. (IEEE, Long Beach, CA); pp. 130134.Google Scholar
Liu, W.L., Tasciuc, T.B., Liu, J.L., Taka, K., Wang, K.L., Dresselhaus, M.S., and Chen, G.: In-plane thermoelectric properties of Si/Ge superlattices. In Proceedings of the 20th International Conference on Thermoelectrics (ICT), 2001. (IEEE, Beijing, China); pp. 340343.Google Scholar
Yang, B., Liu, W.L., Liu, J.L., Wang, K.L., and Chen, G.: Measurements of anisotropic thermoelectric properties in superlattices. Appl. Phys. Lett. 81, 35883590 (2002).Google Scholar
Lake, R. and Datta, S.: Nonequilibrium green’s-function method applied to double-barrier resonant-tunneling diodes. Phys. Rev. B 45, 66706685 (1992).CrossRefGoogle ScholarPubMed
Datta, S.: Quantum Transport: Atom to Transistor (Cambridge University Press, New York, 2005).CrossRefGoogle Scholar
Caroli, C., Combescot, R., Nozieres, P., and Saint-James, D.: A direct calculation of the tunnelling current: IV. electron–phonon interaction effects. J. Phys. C: Solid State Phys. 5(1), 21 (1972).Google Scholar
Mahan, G.: Many-Particle Physics (Kluwer Academic/Plenum Publisher, New York, NY, 2000).Google Scholar
Hopkins, P.E., Norris, P.M., Tsegaye, M.S., and Ghosh, A.W.: Extracting phonon thermal conductance across atomic junctions: Nonequilibrium green’s function approach compared to semiclassical methods. J. Appl. Phys. 106(6), 063503 (2009).Google Scholar
Ziman, J.M.: Electrons and Phonons (Oxford University Press, London, 1960).Google Scholar
Harrison, W.: Electronic Structure and the Properties of Solids (W.H. Freeman and Company, San Francisco, CA, 1989).Google Scholar
Datta, S.: A simple kinetic equation for steady-state quantum transport. J. Phys.: Condens. Matter 2, 80238052 (1990).Google Scholar
Lee, M.L. and Venkatasubramanian, R.: Effect of nanodot areal density and period on thermal conductivity in sige/si nanodot superlattices. Appl. Phys. Lett. 92(5), 053112 (2008).CrossRefGoogle Scholar
Bulusu, A. and Walker, D.G.: Modeling of thermoelectric properties of semiconductor thin films with quantum and scattering effects. J. Heat Transfer 129, 492499 (2007).Google Scholar
Koswatta, S., Hasan, S., Lundstrom, M., Anantram, M., and Nikonov, D.: Nonequilibrium green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54, 23392351 (2007).Google Scholar
Jacoboni, C. and Reggiani, L.: The monte carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645705 (1983).Google Scholar
Jacoboni, C., Cananli, C., Ottaviani, G., and Quaranta, A.A.: A review of some charge transport properties. Solid-State Electron. 20, 7789 (1977).Google Scholar
Lundstrom, M.: Fundamentals of Carrier Transport (Cambridge University Press, New York, NY, 2000).CrossRefGoogle Scholar
Supplementary material: File

Musho supplementary material

Supplementary data

Download Musho supplementary material(File)
File 3.8 KB
Supplementary material: PDF

Musho supplementary material

Supplementary tables

Download Musho supplementary material(PDF)
PDF 133 KB