Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T08:50:06.038Z Has data issue: false hasContentIssue false

Pore-graded and conductor- and binder-free FeS2 films deposited by spray pyrolysis for high-performance lithium-ion batteries

Published online by Cambridge University Press:  15 July 2019

Shadi Al Khateeb*
Affiliation:
Department of Materials Engineering, Faculty of Engineering, Al-Balqa Applied University, Al-Salt 19117, Jordan; and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
Taylor D. Sparks
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

Porosity-graded, conductor- and binder-free porous FeS2 films through the entire thickness were deposited by spray pyrolysis. The film layers deposited at 15 versus 10 L/min are grown in different modes. The film layer deposited at 15 L/min showed Frank–van der Merwe layer-like growth mode whereas the one deposited at 10 L/min showed island growth mode. These growth modes lead to the formation of large pores on the electrolyte side and small ones on the substrate side of the film deposited using 15 and 10 L/min, sequentially. The porosity-graded films showed discharge capacities at C/10 of 879 mA h/g and 754 mA h/g for the 5th and 20th cycles, respectively. Such capacity values are superior to the literature findings for FeS2 powders and nongraded films mixed with conductor and binder additions.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hummel, R.E.: Understanding Materials Science: History, Properties, Applications, 2nd ed. (Springer-Verlag New York, LLC., New York, New York, 2004).Google Scholar
Kodas, T.T. and Hampden-Smith, M.J.: Aerosol Processing of Materials (WILEY-VCH, New York, New York, 1999); pp. 115, 492–493, 577.Google Scholar
Che, S., Sakurai, O., Shinozaki, K., and Mizutani, N.: Particle structure control through intraparticle reactions by spray pyrolysis. J. Aerosol Sci. 29, 271 (1998).CrossRefGoogle Scholar
Liang, Y., Felix, R., Glicksman, H., and Ehrman, S.: Cu–Sn binary metal particle generation by spray pyrolysis. Aerosol Sci. Technol. 51, 430 (2017).CrossRefGoogle Scholar
Liu, M., Liu, D.M., Zhou, M.L., Zhao, Y., Gao, X., and Liang, J.X.: Fabrication of YBCO tapes on Ag substrates by the ultrasonic spray pyrolysis method. Supercond. Sci. Technol. 17, 676 (2004).CrossRefGoogle Scholar
Nandiyanto, A.B.D. and Okuyama, K.: Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 22, 1 (2011).CrossRefGoogle Scholar
Arya, S.P.S. and Hintermann, H.E.: Growth of Y–Ba–Cu–O superconducting thin films by ultrasonic spray pyrolysis. Thin Solid Films 193–194(Part 2), 841 (1990).CrossRefGoogle Scholar
Chamberlin, R.R. and Skarman, J.S.: Chemical spray deposition process for inorganic films. J. Electrochem. Soc. 113, 86 (1966).CrossRefGoogle Scholar
Nikale, V.M., Shinde, S.S., Bhosale, C.H., and Rajpure, K.Y.: Physical properties of spray deposited CdTe thin films: PEC performance. J. Semicond. 32, 033001 (2011).CrossRefGoogle Scholar
Gunjal, S.D., Khollam, Y.B., Jadkar, S.R., Shripathi, T., Sathe, V.G., Shelke, P.N., Takwale, M.G., and Mohite, K.C.: Spray pyrolysis deposition of p-CdTe films: Structural, optical and electrical properties. Sol. Energy 106, 56 (2014).CrossRefGoogle Scholar
Vamsi Krishna, K., Dutta, V., and Koteswara Rao, K.S.R.: Effect of in situ CdCl2 treatment on spray deposited CdTe films: Photoluminescence study. Phys. Status Solidi A 198, 443 (2003).CrossRefGoogle Scholar
Gunjal, S.D., Khollam, Y.B., Udawant, R.R., Jadkar, S.R., Shelke, P.N., Sali, J.V., and Mohite, K.C.: Optical and electrical properties of ultrasonic spray pyrolysized p-CdTe films. In Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 International Conference on (IEEE, New Jersey, 2013); p. 360.Google Scholar
Serreze, H.B., Lis, S., Squillante, M.R., Turcotte, R., Talbot, M., and Entine, G.: Spray pyrolysis prepared CdTe solar cells. In Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, Inc., New York, New York, 1981); p. 1068.Google Scholar
Patil, P.S.: Versatility of chemical spray pyrolysis technique. Mater. Chem. Phys. 59, 185 (1999).CrossRefGoogle Scholar
Pavlopoulos, D., Al-Khatiab, S., Button, T.W., and Abell, J.S.: Effort to produce textured CeO2 and MgO films by the spray pyrolysis technique as buffer layers for coated conductors. J. Phys.: Conf. Ser. 97, 012098 (2008).Google Scholar
Al-Khateeb, S., Pavlopoulos, D., Button, T.W., and Abell, J.S.: Pulsed laser deposition of YBa2Cu3O7 superconducting film on MgO templates spray pyrolyzed on hastelloy C276. J. Supercond. Novel Magn. 25, 1823 (2012).CrossRefGoogle Scholar
Al-Khateeb, S., Pavlopoulos, D., Button, T.W., and Abell, J.S.: Spray pyrolysis of MgO templates on 321-austenitic stainless steel substrates for YBa2Cu3O7 deposition by PLD. J. Supercond. Novel Magn. 26, 273 (2013).CrossRefGoogle Scholar
Al Khateeb, S., Button, T.W., and Abell, J.S.: Spray pyrolysis of MgO templates on Hastelloy C276 and 310-austenitic stainless steel substrates for YBa2Cu3O7 (YBCO) deposition by pulsed laser deposition. Supercond. Sci. Technol. 23, 095001 (2010).CrossRefGoogle Scholar
Zhang, L., Zhu, L., and Virkar, A.V.: Nanostructured cathodes for solid oxide fuel cells by a solution spray-coating process. J. Electrochem. Soc. 163, F1358 (2016).CrossRefGoogle Scholar
Phua, L.X., Xu, F., Ma, Y.G., and Ong, C.K.: Structure and magnetic characterizations of cobalt ferrite films prepared by spray pyrolysis. Thin Solid Films 517, 5858 (2009).CrossRefGoogle Scholar
Vergnières, L., Odier, P., Weiss, F., Bruzek, C.E., and Saugrain, J.M.: Epitaxial thick films by spray pyrolysis for coated conductors. J. Eur. Ceram. Soc. 25, 2951 (2005).CrossRefGoogle Scholar
Paschos, O., Choi, P., Efstathiadis, H., and Haldar, P.: Synthesis of platinum nanoparticles by aerosol assisted deposition method. Thin Solid Films 516, 3796 (2008).CrossRefGoogle Scholar
Skrabalak, S.E. and Suslick, K.S.: Porous MoS2 synthesized by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 127, 9990 (2005).CrossRefGoogle ScholarPubMed
Suh, W.H., Jang, A.R., Suh, Y.H., and Suslick, K.S.: Porous, hollow, and ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Adv. Mater. 18, 1832 (2006).CrossRefGoogle Scholar
Lee, Y.H., Im, S.H., Lee, J-H., and Seok, S.I.: Porous CdS-sensitized electrochemical solar cells. Electrochim. Acta 56, 2087 (2011).CrossRefGoogle Scholar
Bian, J.M., Li, X.M., Chen, T.L., Gao, X.D., and Yu, W.D.: Preparation of high quality MgO thin films by ultrasonic spray pyrolysis. Appl. Surf. Sci. 228, 297 (2004).CrossRefGoogle Scholar
Perednis, D. and Gauckler, L.: Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103 (2005).CrossRefGoogle Scholar
Liu, H., Song, C., Tang, Y., Zhang, J., and Zhang, J.: High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochim. Acta 52, 4532 (2007).CrossRefGoogle Scholar
Jia, Y., Xu, L., Ma, P., Prashanth, K.G., Yao, C., and Wang, G.: Microstructure evolution and hot deformation behavior of spray-deposited TiAl alloys. J. Mater. Res. 33, 2844 (2018).CrossRefGoogle Scholar
Liang, Y., Tian, H., Repac, J., Liou, S-C., Chen, J., Han, W., Wang, C., and Ehrman, S.: Colloidal spray pyrolysis: A new fabrication technology for nanostructured energy storage materials. Energy Storage Mater. 13, 8 (2018).CrossRefGoogle Scholar
Tian, H., Liang, Y., Repac, J., Zhang, S., Luo, C., Liou, S-C., Wang, G., Ehrman, S.H., and Han, W.: Rational design of core–shell-structured particles by a one-step and template-free process for high-performance lithium/sodium-ion batteries. J. Phys. Chem. C 122, 22232 (2018).CrossRefGoogle Scholar
Gurav, A., Kodas, T., Pluym, T., and Xiong, Y.: Aerosol processing of materials. Aerosol Sci. Technol. 19, 411 (1993).CrossRefGoogle Scholar
Kang, Y.C., Park, S.B., Lenggoro, I.W., and Okuyama, K.: Preparation of nonaggregated Y2O3: Eu phosphor particles by spray pyrolysis method. J. Mater. Res. 14, 2611 (1999).CrossRefGoogle Scholar
Fu, X., Wu, G., Song, S., Song, Z., Duo, X., and Lin, C.: Preparation and characterization of MgO thin films by a simple nebulized spray pyrolysis technique. Appl. Surf. Sci. 148, 223 (1999).CrossRefGoogle Scholar
Stryckmans, O., Segato, T., and Duvigneaud, P.H.: Formation of MgO films by ultrasonic spray pyrolysis from β-diketonate. Thin Solid Films 283, 17 (1996).CrossRefGoogle Scholar
Wang, S.Y., Qiao, Z.P., Wang, W., and Qian, Y.T.: XPS studies of nanometer CeO2 thin films deposited by pulse ultrasonic spray pyrolysis. J. Alloys Compd. 305, 121 (2000).CrossRefGoogle Scholar
Wang, S., Wang, W., Zuo, J., and Qian, Y.: Study of the Raman spectrum of CeO2 nanometer thin films. Mater. Chem. Phys. 68, 246 (2001).CrossRefGoogle Scholar
Wang, S.Y., Wang, W., Liu, Q.C., Zhang, M., and Qian, Y.T.: Preparation and characterization of cerium(IV) oxide thin films by spray prolysis method. Solid State Ionics 133, 211 (2000).CrossRefGoogle Scholar
Boone, J.L., Van Doren, T.P., and Berry, A.K.: Deposition of CdTe by spray pyrolysis. Thin Solid Films 87, 259 (1982).CrossRefGoogle Scholar
Al Khateeb, S.: Growth and characterisation of textured superconducint tapes. In Metallurgy and Materials (University of Birmingahm, Birmingham, U.K., 2009); pp. 119–133.Google Scholar
Pavlopoulos, D.: Spray Pyrolysis for Oxide Buffer Layers for Second Generation Coated Conductor Applications (University of Birmingham City, Birmingham, U.K., 2008).Google Scholar
Hamedani, H.A.: Investigation of Deposition Parameters in Ultrasonic Spray Pyrolysis for Fabrication of Solid Oxide Fuel Cell cathode. Mechanical Engineering (Georgia Institute of Technology, Atlanta, Georgia, 2008).Google Scholar
Gan-Moog Chow, L.K.K., Danny Xiao, T., Strutt, P.R., Strock, C.W., Zatorski, R.A., and Kear, B.: Nanosize particle coatings made by thermally spraying solution precursor feedstocks City, WO2000000660A1 (2000).Google Scholar
Al Khateeb, S. and Sparks, T.D.: Spray pyrolysis of conductor- and binder-free porous FeS2 films for high-performance lithium ion batteries. J. Mater. Sci. 45, 40894104 (2018).Google Scholar
Li, L., Caban-Acevedo, M., Girard, S.N., and Jin, S.: High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale 6, 2112 (2014).CrossRefGoogle ScholarPubMed
Ghadbeigi, L., Harada, J.K., Lettiere, B.R., and Sparks, T.D.: Performance and resource considerations of Li-ion battery electrode materials. Energy Environ. Sci. 8, 1640 (2015).CrossRefGoogle Scholar
Wadia, C., Alivisatos, A.P., and Kammen, D.M.: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009).CrossRefGoogle ScholarPubMed
Cabana, J., Monconduit, L., Larcher, D., and Palacín, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170 (2010).CrossRefGoogle ScholarPubMed
Fong, R., Dahn, J.R., and Jones, C.H.W.: Electrochemistry of pyrite-based cathodes for ambient temperature lithium batteries. J. Electrochem. Soc. 136, 3206 (1989).CrossRefGoogle Scholar
Zhu, Y., Fan, X., Suo, L., Luo, C., Gao, T., and Wang, C.: Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 10, 1529 (2016).CrossRefGoogle ScholarPubMed
Choi, Y.J., Kim, N.W., Kim, K.W., Cho, K.K., Cho, G.B., Ahn, H.J., Ahn, J.H., Ryu, K.S., and Gu, H.B.: Electrochemical properties of nickel-precipitated pyrite as cathode active material for lithium/pyrite cell. J. Alloys Compd. 485, 462 (2009).CrossRefGoogle Scholar
Evans, T., Piper, D.M., Kim, S.C., Han, S.S., Bhat, V., Oh, K.H., and Lee, S-H.: Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries. Adv. Mater. 26, 7386 (2014).CrossRefGoogle ScholarPubMed
Yersak, T.A., Macpherson, H.A., Kim, S.C., Le, V-D., Kang, C.S., Son, S-B., Kim, Y-H., Trevey, J.E., Oh, K.H., Stoldt, C., and Lee, S-H.: Solid state enabled reversible four electron storage. Adv. Energy Mater. 3, 120 (2013).CrossRefGoogle Scholar
Wen, X., Wei, X., Yang, L., and Shen, P.K.: Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. J. Mater. Chem. A 3, 2090 (2015).CrossRefGoogle Scholar
Yoder, T.S., Tussing, M., Cloud, J.E., and Yang, Y.: Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries. J. Power Sources 274, 685 (2015).CrossRefGoogle Scholar
Hu, Z., Zhang, K., Zhu, Z., Tao, Z., and Chen, J.: FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. J. Mater. Chem. A 3, 12898 (2015).CrossRefGoogle Scholar
Liu, L., Yuan, Z., Qiu, C., and Liu, J.: A novel FeS2/CNT micro-spherical cathode material with enhanced electrochemical characteristics for lithium-ion batteries. Solid State Ionics 241, 25 (2013).CrossRefGoogle Scholar
Son, S-B., Yersak, T.A., Piper, D.M., Kim, S.C., Kang, C.S., Cho, J.S., Suh, S-S., Kim, Y-U., Oh, K.H., and Lee, S-H.: A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte. Adv. Energy Mater. 4, 1300961 (2014).CrossRefGoogle Scholar
Cheng, S., Wang, J., Lin, H., Li, W., Qiu, Y., Zheng, Z., Zhao, X., and Zhang, Y.: Improved cycling stability of the capping agent-free nanocrystalline FeS2 cathode via an upper cut-off voltage control. J. Mater. Sci. 52, 2442 (2017).CrossRefGoogle Scholar
Kapitanova, O.O., Mironovich, K.V., Melezhenko, D.E., Rokosovina, V.V., Ryzhenkova, S.Y., Korneev, S.V., Shatalova, T.B., Xu, X., Napolskiy, F.S., Itkis, D.M., and Krivchenko, V.A.: Modified carbon nanotubes for water-based cathode slurries for lithium–sulfur batteries. J. Mater. Res. 34, 634 (2019).CrossRefGoogle Scholar
Siyu, H., Xinyu, L., QingYu, L., and Jun, C.: Pyrite film synthesized for lithium-ion batteries. J. Alloys Compd. 472, L9 (2009).CrossRefGoogle Scholar
Yufit, V., Freedman, K., Nathan, M., Burstein, L., Golodnitsky, D., and Peled, E.: Thin-film iron sulfide cathodes for lithium and Li-ion/polymer electrolyte microbatteries. Electrochim. Acta 50, 417 (2004).CrossRefGoogle Scholar
Chen, X., Wang, Z., Wang, X., Wan, J., Liu, J., and Qian, Y.: Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties. Inorg. Chem. 44, 951 (2005).CrossRefGoogle ScholarPubMed
Liu, J., Wen, Y., Wang, Y., van Aken, P.A., Maier, J., and Yu, Y.: Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 26, 6025 (2014).CrossRefGoogle ScholarPubMed
Choi, J-W., Cheruvally, G., Ahn, H-J., Kim, K-W., and Ahn, J-H.: Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode. J. Power Sources 163, 158 (2006).CrossRefGoogle Scholar
Xie, Z., Navessin, T., Shi, K., Chow, R., Wang, Q., Song, D., Andreaus, B., Eikerling, M., Liu, Z., and Holdcroft, S.: Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: II. Experimental study of the effect of nafion distribution. J. Electrochem. Soc. 152, A1171 (2005).CrossRefGoogle Scholar
Hart, N.T., Brandon, N.P., Day, M.J., and Lapeña-Rey, N.: Functionally graded composite cathodes for solid oxide fuel cells. J. Power Sources 106, 42 (2002).CrossRefGoogle Scholar
Xia, C., Rauch, W., Wellborn, W., and Liu, M.: Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochem. Solid-State Lett. 5, A217 (2002).CrossRefGoogle Scholar
Liu, Y., Compson, C., and Liu, M.: Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 138, 194 (2004).CrossRefGoogle Scholar
Liu, L., Guan, P., and Liu, C.: Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation of high voltage lithium-ion batteries. J. Electrochem. Soc. 164, A3163 (2017).CrossRefGoogle Scholar
Wang, Q., Eikerling, M., Song, D., Liu, Z., Navessin, T., Xie, Z., and Holdcroft, S.: Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: I. Theoretical modeling. J. Electrochem. Soc. 151, A950 (2004).CrossRefGoogle Scholar
Inoue, G. and Kawase, M.: Numerical and experimental evaluation of the relationship between porous electrode structure and effective conductivity of ions and electrons in lithium-ion batteries. J. Power Sources 342, 476 (2017).CrossRefGoogle Scholar
Younesi, S.R., Urbonaite, S., Björefors, F., and Edström, K.: Influence of the cathode porosity on the discharge performance of the lithium–oxygen battery. J. Power Sources 196, 9835 (2011).CrossRefGoogle Scholar
Vu, A., Qian, Y., and Stein, A.: Porous electrode materials for lithium-ion batteries—How to prepare them and what makes them special. Adv. Energy Mater. 2, 1056 (2012).CrossRefGoogle Scholar
Liu, C. and Liu, L.: Optimal design of Li-ion batteries through multi-physics modeling and multi-objective optimization. J. Electrochem. Soc. 164, E3254 (2017).CrossRefGoogle Scholar
Tiedemann, W. and Newman, J.: Maximum effective capacity in an ohmically limited porous electrode. J. Electrochem. Soc. 122, 1482 (1975).CrossRefGoogle Scholar
Newman, J.: Optimization of porosity and thickness of a battery electrode by means of a reaction-zone model. J. Electrochem. Soc. 142, 97 (1995).CrossRefGoogle Scholar
Srinivasan, V. and Newman, J.: Design and optimization of a natural graphite/iron phosphate lithium-ion cell. J. Electrochem. Soc. 151, A1530 (2004).CrossRefGoogle Scholar
Jiang, Z.Y., Qu, Z.G., Zhou, L., and Tao, W.Q.: A microscopic investigation of ion and electron transport in lithium-ion battery porous electrodes using the lattice Boltzmann method. Appl. Energy 194, 530 (2017).CrossRefGoogle Scholar
Sikha, G., Popov, B.N., and White, R.E.: Effect of porosity on the capacity fade of a lithium-ion battery. J. Electrochem. Soc. 151, A1104 (2004).CrossRefGoogle Scholar
De, S., Northrop, P.W.C., Ramadesigan, V., and Subramanian, V.R.: Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density. J. Power Sources 227, 161 (2013).CrossRefGoogle Scholar
Liu, L., Park, J., Lin, X., Sastry, A.M., and Lu, W.: A thermal-electrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a Li-ion battery. J. Power Sources 268, 482 (2014).CrossRefGoogle Scholar
Suthar, B., Northrop, P.W.C., Rife, D., and Subramanian, V.R.: Effect of porosity, thickness and tortuosity on capacity fade of anode. J. Electrochem. Soc. 162, A1708 (2015).CrossRefGoogle Scholar
Novák, P., Scheifele, W., Winter, M., and Haas, O.: Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries. J. Power Sources 68, 267 (1997).CrossRefGoogle Scholar
Zhang, H., Yu, X., and Braun, P.V.: Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277 (2011).CrossRefGoogle ScholarPubMed
Hamedani, H.A., Dahmen, K-H., Li, D., Peydaye-Saheli, H., Garmestani, H., and Khaleel, M.: Fabrication of gradient porous LSM cathode by optimizing deposition parameters in ultrasonic spray pyrolysis. Mater. Sci. Eng., B 153, 1 (2008).CrossRefGoogle Scholar
Wang, F., Robert, R., Chernova, N.A., Pereira, N., Omenya, F., Badway, F., Hua, X., Ruotolo, M., Zhang, R., Wu, L., Volkov, V., Su, D., Key, B., Whittingham, M.S., Grey, C.P., Amatucci, G.G., Zhu, Y., and Graetz, J.: Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828 (2011).CrossRefGoogle ScholarPubMed
Ma, Y. and Garofalini, S.H.: Atomistic insights into the conversion reaction in iron fluoride: A dynamically adaptive force field approach. J. Am. Chem. Soc. 134, 8205 (2012).CrossRefGoogle ScholarPubMed
Al-khateeb, S., Lind, A.G., Santos-Ortiz, R., Shepherd, N.D., and Jones, K.S.: Cycling performance and morphological evolution of pulsed laser-deposited FeF2 thin film cathodes for Li-ion batteries. J. Mater. Sci. 50, 5174 (2015).CrossRefGoogle Scholar
Mwakikunga, B.W.: Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since michael faraday. Crit. Rev. Solid State Mater. Sci. 39, 46 (2014).CrossRefGoogle Scholar
Ho Bang, J., Didenko, Y.T., Helmich, R.J., and Suslick, K.S.: Nanostructured Materials through Ultrasonic Spray Pyrolysis, Vol. 7 (Sigma Aldrich, Material Matters, St. Louis, Missouri, 2012); Number 2, 15–20.Google Scholar
Dai, Y. and Srinivasan, V.: On graded electrode porosity as a design tool for improving the energy density of batteries. J. Electrochem. Soc. 163, A406 (2016).CrossRefGoogle Scholar
Milan, J.: Synthesis of high-Tc superconducting films by deposition from an aerosol. Supercond. Sci. Technol. 8, 67 (1995).Google Scholar
Chopra, K.L.: Thin Film Phenomena (McGraw-Hill, New York, New York, 1969); p. 224.Google Scholar
Herman, M.A., Richter, W., and Sitter, H.: Epitaxy: Physical Principles and Technical Implementation, 1st ed. (Springer, Berlin, Germany, 2004); pp. 610.CrossRefGoogle Scholar
Thompson, C.V., Floro, J., and Smith, H.I.: Epitaxial grain growth in thin metal films. J. Appl. Phys. 67, 4099 (1990).CrossRefGoogle Scholar
Ta, H.Q., Perello, D.J., Duong, D.L., Han, G.H., Gorantla, S., Nguyen, V.L., Bachmatiuk, A., Rotkin, S.V., Lee, Y.H., and Rümmeli, M.H.: Stranski–Krastanov and Volmer–Weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 16, 6403 (2016).CrossRefGoogle ScholarPubMed
Eaglesham, D.J. and Cerullo, M.: Dislocation-free Stranski–Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 64, 1943 (1990).CrossRefGoogle Scholar
Shrestha, P., Gu, D., Tran, N., Tapily, K., Baumgart, H., and Namkoong, G.: Investigation of Volmer–Weber growth during the nucleation phase of ALD platinum thin films and template based platinum nanotubes. ECS Trans. 33, 127 (2010).CrossRefGoogle Scholar
Kaiser, N.: Review of the fundamentals of thin-film growth. Appl. Opt. 41, 3053 (2002).CrossRefGoogle ScholarPubMed
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W.: NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).CrossRefGoogle ScholarPubMed
Nakamura, S. and Yamamoto, A.: Electrodeposition of pyrite(FeS2) thin films for photovoltaic cells. Sol. Energy Mater. Sol. Cells 65, 79 (2001).CrossRefGoogle Scholar
Yamamoto, A., Nakamura, M., Seki, A., Li, E.L., Hashimoto, A., and Nakamura, S.: Pyrite (FeS2) thin films prepared by spray method using FeSO4 and (NH4)2Sx. Sol. Energy Mater. Sol. Cells 75, 451 (2003).CrossRefGoogle Scholar
Raturi, A.K., Waita, S., Aduda, B., and Nyangonda, T.: Photoactive iron pyrite films for photoelectrochemical (PEC) cells. Renewable Energy 20, 37 (2000).CrossRefGoogle Scholar
Liu, Z., Lu, T., Song, T., Yu, X-Y., Lou, X.W., and Paik, U.: Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10, 1576 (2017).CrossRefGoogle Scholar
Wang, Y-X., Yang, J., Chou, S-L., Liu, H.K., Zhang, W-x., Zhao, D., and Dou, S.X.: Uniform yolk–shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nat. Commun. 6, 8689 (2015).CrossRefGoogle ScholarPubMed
Sina, M., Nam, K.W., Su, D., Pereira, N., Yang, X.Q., Amatucci, G.G., and Cosandey, F.: Structural phase transformation and Fe valence evolution in FeOxF2−x/C nanocomposite electrodes during lithiation and de-lithiation processes. J. Mater. Chem. A 1, 11629 (2013).CrossRefGoogle Scholar
Montoro, L.A. and Rosolen, J.M.: Gelatin/DMSO: A new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid State Ionics 159, 233 (2003).CrossRefGoogle Scholar
Khateeb, S.A., Lind, A.G., Santos-Ortiz, R., Shepherd, N.D., and Jones, K.S.: Effects of steel cell components on overall capacity of pulsed laser deposited FeF2 thin film lithium ion batteries. J. Electrochem. Soc. 162, A1667 (2015).CrossRefGoogle Scholar
Al-khateeb, S.: The suitability of selected austenitic stainless steels and hastelloy C276 alloys as substrates for thin film deposition using spray pyrolysis. Int. J. Mater. Res. 104, 301 (2013).CrossRefGoogle Scholar