Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:34:41.352Z Has data issue: false hasContentIssue false

A phenomenological model of ion-induced crystallization and amorphization

Published online by Cambridge University Press:  31 January 2011

G. Carter
Affiliation:
Department of Electronic and Electrical Engineering, University of Salford, Salford M5 4WT, England
M.J. Nobes
Affiliation:
Department of Electronic and Electrical Engineering, University of Salford, Salford M5 4WT, England
Get access

Abstract

A simple phenomenological model is developed to explain, qualitatively, the observed temperature and ion flux dependences of either recrystallization or further amorphous growth of amorphous layers in semiconductors when exposed to ion irradiation. The model includes radiation assisted annealing processes and thermally modified amorphous zone production at the amorphous-crystal interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Csepregi, W. K., Chu, W. K., Muller, H., Mayer, J. W., and Sigmon, T. W., Radiat. Eff. 28, 227 (1976).Google Scholar
2.Golecki, I., Chapman, G. E., Lau, S. S., Tsaur, B. Y., and Mayer, J. W., Phys. Lett. A71, 267 (1979).CrossRefGoogle Scholar
3.Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., in Laser-Solid Interactions and Transient Thermal Processing of Materials, edited by Narayan, J., Brown, W. L., and Lemons, R. A., (Mater. Res. Soc. Symp. Proc. 13, Pittsburgh, PA, 1983), p. 141.Google Scholar
4.Olson, G. L. and Roth, J. A., Mater. Sci. Rep. 3, 1 (1988).CrossRefGoogle Scholar
5.Holmén, G., Högberg, P., and Burén, A., Radiat. Eff. 24, 39 (1975).CrossRefGoogle Scholar
6.Holmén, G., Peterström, S., Burén, A., and Bøgh, E., Radiat. Eff. 24, 45 (1975).CrossRefGoogle Scholar
7.Linnros, J., Svensson, B., and Holmén, G., Phys. Rev. B 30, 3629 (1984).Google Scholar
8.Linnros, J. and Holmén, G., Phys. Rev. B 32, 2770 (1985).Google Scholar
9.Williams, J. S., Elliman, R. G., Brown, W. L., and Seidel, T. E., Phys.Rev. Lett. 55, 1482 (1985).Google Scholar
10.Zeroual, B. and Carter, G., Vacuum, to be published (1991).Google Scholar
11.Linnros, J., Ph.D. Thesis, Chalmers University, Göteborg, Sweden (1985).Google Scholar
12.Williams, J. S., Elliman, R. G., Brown, W. L., and Seidel, T. E., in Layered Structures, Epitaxy, and Interfaces, edited by Gibson, J. M. and Dawson, L. K. (Mater. Res. Soc. Symp. Proc. 37, Pittsburgh, PA, 1985), p. 127.Google Scholar
13.Brown, W. L., Elliman, R. G., Knoell, R. V., Leiberich, A., Linnros, J., Maher, D. M., and Williams, J. S., in Microscopy of Semiconductor Materials, edited by Cullis, A. G. (Inst. of Physics, London, 1987), p. 61.Google Scholar
14.Elliman, R. G., Williams, J. S., Brown, W. L., Leiberich, A., Maher, D. M., and Knoell, R. V., Nucl. Instrum. Methods B 19/20, 435 (1987).CrossRefGoogle Scholar
15.Leiberich, A., Maher, D. M., Knoell, R. V., and Brown, W. L., Nucl. Instrum. Methods B 19/20, 457 (1987).Google Scholar
16.Brown, W. L., Linnros, J., and Elliman, R. G. (private communication).Google Scholar
17.Linnros, J., Elliman, R. G., and Brown, W. L., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (J. Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 477 and J. Mater. Res. 3, 1208 (1988).Google Scholar
18.Linnros, J., Brown, W. L., and Elliman, R. G., in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, edited by Aziz, M. J., Rehn, L. E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 368.Google Scholar
19. Sukirno, Zeroual, B., Emberson, S. C., Ahmed, H., and Carter, G., to be published (1991).Google Scholar
20.Holmén, G. and Högberg, P., Radiat. Eff. 12, 77 (1972).Google Scholar
21.Mashkova, E. S. and Molchanov, V. A., Bull. Acad. Sci. USSR 33, 700 (1969).Google Scholar
22.Zwangobani, E. and Macdonald, R. J., Phys. Lett. 32A, 308 (1970).Google Scholar
23.Jackson, K. A., J. Mater. Res. 3, 1218 (1988).CrossRefGoogle Scholar
24.Morehead, F. F. and Crowder, B. L., in Ion Implantation, edited by Eisen, F. H. and Chadderton, L. T. (Gordon and Breach, London, 1971), p. 25.Google Scholar
25.Nelson, R. S., Radiat. Eff. 32, 19 (1977).CrossRefGoogle Scholar
26.Zeroual, B. and Carter, G., Radiation Effects and Defects in Solids 108, 9 (1989).Google Scholar
27.Zeroual, B. and Carter, G., Nucl. Instrum. Methods B44, 318 (1990).CrossRefGoogle Scholar
28.Davies, J. A., Denhartog, J., Eriksson, L., and Mayer, J. W., Can. J. Phys. 45, 4053 (1967).Google Scholar
29.Mayer, J. W., Eriksson, L., Picraux, S. T., and Davies, J. A., Can. J. Phys. 46, 663 (1968).Google Scholar
30.Kostic, S., Nobes, M. J., Carter, G., Davies, J. A., Stevanovic, D., and Thompson, D. A., Nucl. Instrum. Methods B19/20, 422 (1987).Google Scholar
31.Zheng, P., Ruault, M-O., Kaitasov, O., Crestou, J., Descouts, B., Kranz, P., and Duhamel, N., J. Phys. E., to be published (1991).Google Scholar
32.Carter, G., Katardjiev, I. V., and Nobes, M. J., Materials Modification by High Fluence Ion Beams, Proc. NATO ASI Series E Applied Sciences, edited by Kelly, R. and de Silva, M. Fernanda (Kluwer Acad. Publ., Dordrecht, 1989), Vol. 155, p. 3.CrossRefGoogle Scholar
33.Carter, G., Katardjiev, I. V., and Nobes, M. J., Radiat. Eff. 105, 211 (1987).Google Scholar