Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T01:49:48.363Z Has data issue: false hasContentIssue false

Partial melt processing of solid-solution Bi2Sr2CaCu2O8+δ thick-film conductors with nanophase Al2O3 additions

Published online by Cambridge University Press:  31 January 2011

T. Haugan*
Affiliation:
National Institute of Standards and Technology, Materials Science and Engineering Laboratory, 100 Bureau Dr. Stop 8520, Gaithersburg, Maryland 20899-8520
W. Wong-Ng
Affiliation:
National Institute of Standards and Technology, Materials Science and Engineering Laboratory, 100 Bureau Dr. Stop 8520, Gaithersburg, Maryland 20899-8520
L. P. Cook
Affiliation:
National Institute of Standards and Technology, Materials Science and Engineering Laboratory, 100 Bureau Dr. Stop 8520, Gaithersburg, Maryland 20899-8520
M. D. Vaudin
Affiliation:
National Institute of Standards and Technology, Materials Science and Engineering Laboratory, 100 Bureau Dr. Stop 8520, Gaithersburg, Maryland 20899-8520
L. Swartzendruber
Affiliation:
National Institute of Standards and Technology, Materials Science and Engineering Laboratory, 100 Bureau Dr. Stop 8520, Gaithersburg, Maryland 20899-8520
P. N. Barnes
Affiliation:
Air Force Research Laboratory, Propulsion Directorate, 2645 Fifth St., Ste. 13, Wright-Patterson AFB, Ohio 45433-7919
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Partial-melt processing of Bi2+xSr2-x-yCa1+yCu2O8+δ (Bi-2212) thick-film conductors with additions of nanophase Al2O3 was studied for dual purposes of increasing flux pinning and inhibiting Sr—Ca—Cu—O phase defect formation. Nanophase Al2O3 (<50% mole fraction) was added to Bi:Sr:Ca:Cu:O powders with four different compositions: three with Bi:Cu approximately 2:2 and one (Bi2Sr2.38Ca1.15Cu2.92O9.7+δ) closer to the ideal Bi-2223 composition. The effect of Al2O3 addition on film microstructural and superconducting properties was studied for a range of partial-melt temperatures (865 to 900 °C). Results were compared to Al2O3-free films with compositions lying within the single-phase solid-solution 2212 region. Nanophase Al2O3 reacted with 2212-type precursors to form a composite of micron size or smaller particles of solid-solution (Sr,Ca)3Al2O6 in a solid-solution 2212 superconducting matrix. The Ca content of the (Sr,Ca)3Al2O6 particles formed approximated that of the 2212 precursor (≤6% mole fraction difference). Addition of 6–25% volume fraction of (Sr,Ca)3Al2O6 to Bi-2212 (by reaction between Al2O3 and Bi-2212) only slightly reduced superconducting transition temperatures and c-axis texturing; however this addition improved film quality by reducing Sr—Ca—Cu—O defect volume fraction by factors of 2 to 6 and significantly increased the critical current density by over one order of magnitude for 0 to 2 T applied fields at 20 to 30 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Walker, M.S., Hazelton, D.W., Gardner, M.T., Rice, J.A., Walker, D.G., Trautwein, C.M., Ternullo, N.J., Shi, X., Weloth, J.M., Sokolowski, R.S., List, F.A., IEEE Trans. Appl. Supercond. 7, 889 (1997).CrossRefGoogle Scholar
2.Shaw, D.T., Jin, S., and Murakami, M., in Processing and Properties of High Tc Superconductors Volume 1. Bulk Materials, edited by Jin, S. (World Scientific, River Edge, NJ, 1993), pp. 87–120, 213272.Google Scholar
3.Meng, R.L., Garcia, C., Wang, Y.Q., Kang, W.N., Rusakova, I., Chu, C.W., Physica C 306, 223 (1998).CrossRefGoogle Scholar
4.Heine, K., Tenbrink, J., and Thöner, M., Appl. Phys. Lett. 55, 2441 (1989).CrossRefGoogle Scholar
5.Kase, J., Togano, K., Kumakura, H., Dietderich, D.R., Irisawa, N., Morimoto, T., Maeda, H., Jpn. J. Appl. Phys. 29, L1096 (1990).CrossRefGoogle Scholar
6.Haugan, T., Partial-Melt Growth of Bi2Sr2CaCu2O8+x/Ag Superconducting Tapes, Ph.D. Dissertation, State Univ. of New York at Buffalo (UMI Dissertation Services, Ann Arbor, MI, 1995).Google Scholar
7.Haugan, T., Patel, S., Pitsakis, J., Wong, F., Chen, S.J., and Shaw, D.T., J. Electron. Mater. 24, 1811 (1995).CrossRefGoogle Scholar
8.Shimoyama, J., Tomita, N., Morimoto, T., Kitaguchi, H., Kumakura, H., Togano, K., Maeda, H., Nomura, K., and Seido, M., Jpn. J. Appl. Phys. 31, L1328 (1992).CrossRefGoogle Scholar
9.Patel, S., Haugan, T., Chen, S., Wong, F., Narumi, E., and Shaw, D.T., Cryogenics 34, 537 (1994).CrossRefGoogle Scholar
10.Kumakura, H., Togano, K., Kitaguchi, H., Maeda, H., and Kase, J., Physica C 185–189, 2341 (1991).CrossRefGoogle Scholar
11.Krusin-Elbaum, L., Thompson, J.R., Wheeler, R., Marwick, A.D., Li, C., Patel, S., Shaw, D.T., Lisowski, P., and Ullman, J., Appl. Phys. Lett. 64, 3331 (1994).CrossRefGoogle Scholar
12.Wei, W., Schwartz, J., Goretta, K.C., Balachandran, U., Bhargava, A., Physica C 298, 279 (1998).CrossRefGoogle Scholar
13.Haugan, T., Wong-Ng, W., Cook, L.P., Brown, H.J., Swartzendruber, L., Shaw, D.T., Physica C 335, 129 (2000).CrossRefGoogle Scholar
14.Haugan, T., Wong-Ng, W., Cook, L.P., Swartzendruber, L., Brown, H.J., Shaw, D.T., in Perovskite Oxides for Electronic Energy Conversion, and Energy Efficiency Applications, edited by Wong-Ng, W., Holesinger, T., Riley, G., and Guo, R. (American Ceramic Society Ceramic Transactions 104, Westerville, OH, 2000).Google Scholar
15.Holesinger, T.G., J. Mater. Res. 11, 2135 (1996).CrossRefGoogle Scholar
16.Haugan, T., Wong-Ng, W., Cook, L.P., Geyer, R.G., Brown, H.J., Swartzendruber, L., Kaduk, J., IEEE Trans. Appl. Supercond. 11, 3305 (2001).CrossRefGoogle Scholar
17.Kazin, P.E., Poltavets, V.V., Tretyakov, Y.D., Jansen, M., Freitag, B., and Mader, W., Supercond. Sci. Technol. 12, 475 (1999).CrossRefGoogle Scholar
18.Goretta, K.C., Cuber, M.M., Feng, L.R., Fisher, B.L., Jiang, M., Lanagan, M.T., Balachandran, U., Xu, Y., Xu, M., IEEE Trans. Appl. Supercond. 9, 1896 (1999).CrossRefGoogle Scholar
19.Kazin, P.E., Poltavets, V.V., Tretyakov, Y.D., Jansen, M., Freitag, B., Mader, W., Physica C 280, 253 (1997).CrossRefGoogle Scholar
20.Lin, J.J., Lin, W.Y., and Tsui, R.F., Physica C 210, 455 (1993).CrossRefGoogle Scholar
21.Dou, S.X., Liu, H.K., Guo, S.J., Easterling, K.E., and Mikael, J., Supercond. Sci. Technol. 2, 274 (1989).CrossRefGoogle Scholar
22.He, Y., Zhou, F., and Zhao, Z.X., Physica C 328, 207 (1999).CrossRefGoogle Scholar
23.Lee, S., Kwon, K.J., Kim, W.S., and Lee, S.I., Physica C 251, 149 (1995).CrossRefGoogle Scholar
24.Matsubara, I., Funahashi, R., Ogura, T., Yamashita, H., Tsuru, K., and Kawai, T., J. Cryst. Growth 141, 131 (1994).CrossRefGoogle Scholar
25.Abe, Y., Hirata, K., Hosono, H., and Kubo, Y., J. Mater. Res. 7, 1599 (1992).CrossRefGoogle Scholar
26.Alarco, J.A., Ilushechkin, A.. Yamashita, T., Bhargava, A., Barry, J., and MacKinnon, I.D.R., J. Mater. Sci. 32, 3759 (1997).CrossRefGoogle Scholar
27.Shannon, R.D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
28.Powder Diffraction File Nos. 24–1187 and 28-1429 (International Centre for Diffraction Data, Newtown Square, PA).Google Scholar
29.Heinrich, K.F.J., Electron Beam X-ray Microanalysis (Van Nostrand Reinhold, New York, 1981).Google Scholar
30.Morimoto, T., Shimoyama, J., Kase, J., and Yanagisawa, E., Supercond. Sci. Technol. 5, S328 (1992).CrossRefGoogle Scholar
31.Majewski, P., Adv. Mater. 6, 460 (1994).CrossRefGoogle Scholar
32.Holesinger, T.G., Miller, D.J., and Chumbley, L.S., Physica C 217, 85 (1993).CrossRefGoogle Scholar
33.Müller, R., Schweizer, Th., Bohac, P., Suzuki, R.O., and Gauckler, L.J., Physica C 203, 299 (1992).CrossRefGoogle Scholar
34.Sinclair, D.C., Irvine, J.T.S., and West, A.R., J. Mater. Chem. 2, 579 (1992).CrossRefGoogle Scholar
35.Kníek, K.. Pollert, E., Sedmidubský, D., Hejtmánek, J., and Prachaová, J., Physica C 216, 211 (1993).CrossRefGoogle Scholar
36.Certificate of Analysis, S.R.M. 660, edited by Hubbard, C.R., Zhang, Y., and McKenzie, R.L. (National Institute of Standards and Technology, Gaithersburg, MD, 1989), p. 20899.Google Scholar
37.Vaudin, M.D., Rupich, M.W., Jowett, M., Riley, G.N., and Bingert, J.F., J. Mater. Res. 13, 2910 (1998).CrossRefGoogle Scholar
38.Vaudin, M.D., Proc. Int. Conf. Textures Mater, 12th 1, 186 (1999).Google Scholar
39.TexturePlus: available on http://www.ceramics.nist.gov/webbook/TexturePlus/texture.htm.Google Scholar
40.Vaudin, M.D. and Fox, G.R., in Ferroelectric Thin Films VIII, edited by Schwarz, R.W., McIntyre, P.C., Miyasaka, Y., Summerfelt, S.R., and Wouters, D. (Mater. Res. Soc. Proc. 596, Warrendale, PA, 2000), pp. 363368.Google Scholar
41.Fahr, T., Pitschke, W., Trinks, H.-P., and Fischer, K. (Inst. Of Phys. Publishing Conf. Ser. 167, Philadelphia, PA, 2000), p. 587.Google Scholar
42.Onoda, M., Yamamoto, A., Takayama-Muromachi, E., and Takekawa, S., Jpn. J. Appl. Phys. 27, L833 (1988).CrossRefGoogle Scholar
43.Matheis, D.P. and Snyder, R.L., Powder Diffr. 5, 8 (1990).CrossRefGoogle Scholar
44.Fiori, C.E., Swyt, C.R., and Myklebust, R.L., NIST/NIH Desktop Spectrum Analyzer Program and X-ray Database (National Institute of Standards and Technology Standard Reference Database 36, Gaithersburg, MD, 1991).Google Scholar
45.Muralidhar, M., Koblischka, M.R., and Murakami, M., Physica C 313, 232 (1999).CrossRefGoogle Scholar
46.Goldfarb, R.B., Lelental, M., and Thompson, C.A., in Magnetic Susceptibility of Superconductors and Other Spin Systems (Plenum, New York, 1991), p. 49.CrossRefGoogle Scholar
47.Grader, G.S., Gyorgy, E.M., Gallagher, P.K., O’Bryan, H.M., Johnson, D.W., Jr., Sunshine, S., Zahurak, S.M., Jin, S., and Sherwood, R.C., Phys. Rev. B 38, 757 (1988).CrossRefGoogle Scholar
48.Walz, L., Z. Kristall. 213, 47 (1998).CrossRefGoogle Scholar
49.Cullity, B.D., Elements of X-Ray Diffraction (Addison-Wesley, Menlo Park, CA, 1978).Google Scholar
50.Zhang, W., Pashitski, A., and Hellstrom, E., in Superconductivity and Its Applications, edited by Kwok, H.S., Shaw, D.T., and Naughton, M.J. (American Institute of Physics Conf. Proc. 273, New York, 1993), p. 599.Google Scholar
51.Chong, I., Hiroi, Z., Izumi, M., Shimoyama, J., Nakayama, Y., Kishio, K., Terashima, T., Bando, Y., and Takano, M., Science 276, 770 (1997).CrossRefGoogle Scholar
52.Shimoyama, J., Nakayam, Y., Kitazawa, K., Kishio, K., Hiroi, Z., Chong, I., and Takano, M., Physica C 281, 69 (1997).CrossRefGoogle Scholar
53.Li, C., Patel, S., Ye, J., Narumi, E., Shaw, D.T., and Sato, T., Appl. Phys. Lett. 63, 2558 (1993).CrossRefGoogle Scholar