Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T01:02:06.231Z Has data issue: false hasContentIssue false

Oxide thermoelectrics: The challenges, progress, and outlook

Published online by Cambridge University Press:  27 July 2011

Jian He*
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634-0978
Yufei Liu
Affiliation:
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634-0978
Ryoji Funahashi
Affiliation:
Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan; and CREST, Japan Science and Technology Agency, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Most state-of-the-art thermoelectric (TE) materials contain heavy elements Bi, Pb, Sb, or Te and exhibit maximum figure of merit, ZT∼1–2. On the other hand, oxides were believed to make poor TEs because of the low carrier mobility and high lattice thermal conductivity. That is why the discoveries of good p-type TE properties in layered cobaltites NaxCoO2, Ca4Co3O9, and Bi2Sr2Co2O9, and promising n-type TE properties in CaMnO3- and SrTiO3-based perovskites and doped ZnO, broke new ground in thermoelectrics study. The past two decades have witnessed more than an order of magnitude enhancement in ZT of oxides. In this article, we briefly review the challenges, progress, and outlook of oxide TE materials in their different forms (bulk, epitaxial film, superlattice, and nanocomposites), with a greater focus on the nanostructuring approach and the late development of the oxide-based TE module.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tritt, T.M., Subramanian, M.A., Bottner, H., Caillat, T., Chen, G., Funahashi, R., Ji, X., Kanatzidis, M., Koumoto, K., Nolas, G.S., Poon, J., Rao, A.M., Terasaki, I., Venkatasubramanian, R., and Yang, J.: Special issue on harvesting energy through thermoelectrics: Power generation and cooling. MRS Bull. 31, (2006).Google Scholar
2.Nolas, G.S., Sharp, J., and Goldsmid, H.J.: Thermoelectrics Basic Principles and New Materials Developments (Springer-Verlag, Berlin Heidelberg, 2001).Google Scholar
3.Slack, G.A.: New materials and performance limits for thermoelectric cooling, in CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (CRC Press, Boca Raton, 1995), pp. 407440.Google Scholar
4.Ioffe, A.F.: Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd., London, 1957).Google Scholar
5.Mahan, G.D.: Figure-of-merit for thermoelectrics. J. Appl. Phys. 65, 1578 (1989).Google Scholar
6.Goldsmid, H.J.: Electronic Refrigeration (Pion Limited, London, 1986).Google Scholar
7.Terasaki, I., Sasago, Y., and Uchinokura, K.: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685 (1997).CrossRefGoogle Scholar
8.Ito, M., Nagira, T., Furumoto, D., Katsuyama, S., and Nagai, H.: Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method. Scr. Mater. 48, 403 (2003).Google Scholar
9.Fujita, K., Mochida, T., and Nakamura, K.: High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn. J. Appl. Phys. 40, 4644 (2001).Google Scholar
10.Ando, Y., Miyamoto, N., Segawa, K., Kawata, T., and Terasaki, I.: Specific-heat evidence for strong electron correlation in the thermoelectric materials (Na,Ca)Co2O4. Phys. Rev. B 60, 10580 (1999).Google Scholar
11.Wang, Y., Rogado, N.S., Cava, R.J., and Ong, N.P.: Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 423, 425 (2003).CrossRefGoogle ScholarPubMed
12.Koshibae, W., Tsutsui, K., and Maekawa, S.: Thermopower in cobalt oxides. Phys. Rev. B 62, 6869 (2000).Google Scholar
13.Singh, D.J. and Kasinathan, D.: Thermoelectric properties of NaxCoO2 and prospects for other oxide thermoelectrics. J. Electron. Mater. 36, 736 (2007).CrossRefGoogle Scholar
14.Koumoto, K., Wang, Y.F., Zhang, R., Kosuga, A., and Funahashi, R.: Oxide thermoelectric materials: A nanostructuring approach. Annu. Rev. Mater. Res. 40, 363 (2010).Google Scholar
15.Ohtaki, M.: Oxide thermoelectric materials for heat-to-electricity direct energy conversion. Newslett. Kyushu Univ. G-COE program Novel Carbon Resources Sciences, 3, 8 (2010). http://ncrs.cm.kyushu-u.ac.jp/ncrs2/379.html.Google Scholar
16.Ohta, H., Sugiura, K., and Koumoto, K.: Recent progress in oxide thermoelectric materials p-type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem. 47, 8429 (2008).CrossRefGoogle ScholarPubMed
17.Vineis, C.J., Shakouri, A., Marjumdar, A., and Kanatzidis, M.G.: Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22, 3970 (2010).Google Scholar
18.Kanatzidis, M.G.: Nanostructured thermoelectric: The new paradigm? Chem. Mater. 22, 648 (2010).CrossRefGoogle Scholar
19.Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., and Chen, G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009).Google Scholar
20.Mahan, G.: Benedicks effect: Nonlocal electron transport in metals. Phys. Rev. B 43, 3945 (1991).CrossRefGoogle ScholarPubMed
21.Anatychuk, L.I. and Bulat, L.P.: Thermoelectric phenomena under large temperature gradients, in CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (CRC Press, Boca Raton, 2005), pp. 38.Google Scholar
22.Vaqueiro, P. and Powell, A.V.: Recent developments in nanostructured materials for high-performance thermoelectrics. J. Mater. Chem. 20, 9577 (2010).Google Scholar
23.Li, S., Funahashi, R., Matsubara, I., Ueno, K., and Yamada, H.: High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem. 9, 1659 (1999).Google Scholar
24.Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U., and Sodeoka, S.: Oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000).CrossRefGoogle Scholar
25.Shikano, M. and Funahashi, R.: Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003).Google Scholar
26.Zhou, Y., Matsubara, I., Horii, S., Takeuchi, T., Funahashi, R., Shikano, M., Shimoyama, J., Kishio, K., Shin, W., Izu, N., and Murayama, N.: Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramic. J. Appl. Phys. 93, 2653 (2003).CrossRefGoogle Scholar
27.Wang, D., Cheng, L., Yao, Q., and Li, J.: High-temperature thermoelectrics properties of Ca3Co4O9+δ with Eu substitution. Solid State Commun. 129, 615 (2004).CrossRefGoogle Scholar
28.Nong, N.V., Liu, C.-J., and Ohtaki, M.: Improvement on the high temperature thermoelectric performance of Ga-doped misfit-layered Ca3Co4-xGaxO9+δ. J. Alloy. Comp. 491, 53 (2010).Google Scholar
29.Funahashi, R., Matsubara, I., and Sodeoka, S.: Thermoelectric properties of Bi2Sr2Co2Ox polycrystalline materials. Appl. Phys. Lett. 76, 2385 (2000).Google Scholar
30.Funahashi, R. and Shikano, M.: Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit. Appl. Phys. Lett. 81, 1459 (2002).Google Scholar
31.Funahashi, R. and Matsubara, I.: Thermoelectric properties of Pb- and Ca-doped (Bi2Sr2O4)xCo2 whiskers. Appl. Phys. Lett. 79, 362 (2007).Google Scholar
32.Shen, J.J., Liu, X.X., Zhu, T.J., and Zhao, X.B.: Improved thermoelectric properties of La-doped Bi2Sr2Co2O9 layered misfit oxides. J. Electron. Mater. 44, 1889 (2009).Google Scholar
33.Koumoto, K., Terasaki, I., and Funahashi, R.: Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206 (2006).Google Scholar
34.Ohta, S., Nomura, T., Ohta, H., and Koumoto, K.: High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97, 034106 (2005).CrossRefGoogle Scholar
35.Ohta, S., Ohta, H., and Koumoto, K.: Grain size dependence of thermoelectric performance of Nb-doped SrTiO3 polycrystal. J. Ceram. Soc. Jpn. 114, 105 (2006).Google Scholar
36.Cui, Y., He, J., Amow, G., and Kleinke, H.: Thermoelectric properties of n-type double substituted SrTiO3 bulk materials. Dalton Trans. 39, 1031 (2010).Google Scholar
37.Okuda, T., Nakanishi, K., Miyasaka, S., and Tokura, Y.: Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0<∼ x<∼0.1). Phys. Rev. B 63, 113104 (2001).CrossRefGoogle Scholar
38.Kosuga, A., Isse, Y., Wang, Y., Koumoto, K., and Funahashi, R.: High-temperature thermoelectric properties of Ca0.9-xSrxYb0.1MnO3-δ (0 ≤ x ≤ 0.2). J. Appl. Phys. 105, 093717 (2009).Google Scholar
39.Wang, Y., Sui, Y., and Su, W.: High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R=La, Pr, … Yb). J. Appl. Phys. 104, 093703 (2008).CrossRefGoogle Scholar
40.Bocher, L., Aguirre, M.H., Logvinovich, D., Shkabko, A., and Robert, R.: CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077 (2008).CrossRefGoogle ScholarPubMed
41.Huang, X.Y., Miyazaki, Y., and Kajitani, T.: High temperature thermoelectric properties of Ca1-xBixMn1-yVyO3-δ(0≤x=y≤0.08). Solid State Commun. 145, 132 (2008).Google Scholar
42.Sakai, K., Karppinen, M., Chen, J.M., Liu, R.S., Sugihara, S., and Yamauchi, H.: Pb-for-Bi substitution for enhancing thermoelectric characteristics of [(Bi, Pb)2Ba2O4±ω]0.5CoO2. Appl. Phys. Lett. 88, 232102 (2006).Google Scholar
43.Kobayashi, W., Hébert, S., Pelloquin, D., Pérez, O., and Maignan, A.: Enhanced thermoelectric properties in a layered rhodium oxide with a trigonal symmetry. Phys. Rev. B 76, 245102 (2007).Google Scholar
44.Androulakis, J., Migiakis, P., and Giapintzakis, J.: La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide. Appl. Phys. Lett. 84, 1099 (2004).CrossRefGoogle Scholar
45.Weber, W.J., Griffin, C.W., and Bates, J.L.: Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70, 265 (1987).CrossRefGoogle Scholar
46.Kuriyama, H., Nohara, M., Sasagawa, T., Takubo, K., Mizokawa, T., Kimura, K., and Takagi, H.: High-temperature thermoelectric properties of delafossite oxide CuRh1-xMgxO2, Proceedings of the 25th International Conference on Thermoelectrics, Vienna, Austria, 97, (2007).Google Scholar
47.Guilmeau, E., Bérardan, D., Simon, Ch., Gaignan, A., Raveau, B., Ovono Ovono, D., and Delorme, F.: Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at In-site. J. Appl. Phys. 106, 053715 (2009).Google Scholar
48.Wang, Y.F., Lee, K.H., Ohta, H., and Koumoto, K.: Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1, 2) ceramics. J. Appl. Phys. 105, 103701 (2009).Google Scholar
49.Wang, Y.F., Lee, K.H., Ohta, H., and Koumoto, K.: Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n (n= 1,2) ceramics. Ceram. Int. 34, 849 (2008).CrossRefGoogle Scholar
50.Lee, K.H., Wang, Y.F., Hyuga, H., Kita, H., Ohta, H., and Koumoto, K.: Enhancement of thermoelectric performance in rare earth-doped Sr3Ti2O7 by symmetry restoration of TiO6 octahedra. J. Electroceram. 24, 76 (2010).Google Scholar
51.Shin, W. and Murayama, N.: High performance p-type thermoelectric oxide based on NiO. Mater. Lett. 45, 302 (2000).Google Scholar
52.Ishikawa, R., Ono, Y., Miyazaki, Y., and Kajitani, T.: Low-temperature synthesis and electric properties of new layered cobaltite, SrxCoO2. Jpn. J. Appl. Phys. 41(Part 2), L337 (2002).Google Scholar
53.Ohtaki, M., Tsubota, T., Eguchi, K., and Arai, H.: High-temperature thermoelectric properties of (Zn1−xAlx)O. J. Appl. Phys. 79, 1816 (1996).Google Scholar
54.Tsubota, T., Ohtaki, M., Eguchi, K., and Arai, H.: Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J. Mater. Chem. 7, 85 (1997).CrossRefGoogle Scholar
55.Katsuyama, S., Takagi, Y., Ito, M., Majima, K., Nagai, H., Sakai, H., Yoshimura, K., and Kosuge, K.: Thermoelectric properties of (Zn1-yMgy)1-xAlxO ceramics prepared by the polymerized complex method. J. Appl. Phys. 92, 1391 (2002).Google Scholar
56.Ohtaki, M., Araki, K., and Yamamoto, K.: High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 38, 1234 (2009).Google Scholar
57.Ohta, H., Seo, W.S., and Koumoto, K.: Thermoelectric properties of homologous compounds in the ZnO-In2O3 system. J. Am. Ceram. Soc. 79, 2193 (1996).Google Scholar
58.Koc, R. and Anderson, H.U.: Electrical conductivity and Seebeck coefficient of (La, Ca)(Cr, Co)O3. J. Mater. Sci. 27, 5477 (1992).Google Scholar
59.Wood, C. and Emin:, D.Conduction mechanism in boron carbide. Phys. Rev. B 29, 4582 (1984).Google Scholar
60.Ohta, H., Mizutani, A., Sugiura, K., Hirano, M., Hosono, H., and Koumoto, K.: Surface modification of glass substrate for oxide heteroepitaxy: Pastable three-dimensionally oriented layered oxide thin film. Adv. Mater. 18, 1649 (2006).Google Scholar
61.Sugiura, K., Ohta, H., Nomura, K., Hirano, M., Hosono, H., and Koumoto, K.: High electrical conductivity of layered cobalt oxide Ca3Co4O9 epitaxial films grown by topotactic ion-exchange method. Appl. Phys. Lett. 89, 032111 (2006).CrossRefGoogle Scholar
62.Sugiura, K., Ohta, H., Nomura, K., Saito, T., Ikuhara, Y., Hirano, M., Hosono, H., and Koumoto, K.: Thermoelectric properties of the layer cobaltite Ca3Co4O9 epitaxial filmsfabricated by topotactic ion-exchange method. Mater. Trans. 48, 2104 (2007).Google Scholar
63.Ohta, S., Nomura, T., Ohta, H., Hirano, M., Hosono, H., and Koumoto, K.: Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 87, 092108 (2005).Google Scholar
64.Kurita, D., Ohta, S., Sugiura, K., Ohta, H., and Koumoto, K.: Carrier generation and transport properties of heavily Nb-doped anatase TiO2 epitaxial films at high temperatures. J. Appl. Phys. 100, 096105 (2006).Google Scholar
65.Lee, K.H., Ishizaki, A., Kim, S.W., Ohta, H., and Koumoto, K.: Preparation and thermoelectric properties of heavily Nb-doped SrO(SrTiO3)1 epitaxial films. J. Appl. Phys. 102, 033702 (2007).CrossRefGoogle Scholar
66.Ohta, H., Nomura, K., Orita, M., Hirano, M., Ueda, K., Suzuki, T., Ikuhara, Y., and Hosono, H.: Single-crystalline films of InGaO3(ZnO)m (m=integer) homologous phase grown by reactive solid-phase epitaxy. Adv. Funct. Mater. 13, 139 (2003).Google Scholar
67.Dismukes, J.P., Ekstrom, L., Steigmeier, E.F., Kudman, I., and Beers, D.S.: Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300°K. J. Appl. Phys. 35, 2899 (1964).Google Scholar
68.Ishiwata, S., Terasaki, I., Kusano, Y., and Takano, M.: Transport properties of misfit-layered cobalt oxide [Sr2O2-δ]0.53CoO2. J. Phys. Soc. Jpn. 75, 104716 (2006).Google Scholar
69.Kato, K., Yamamoto, M., Ohta, S., Muta, H., Kurosaki, K., Yamanaka, S., Iwasaki, H., Ohta, H., and Koumoto, K.: The effect of Eu substitution on thermoelectric properties of SrTi0.8Nb0.2O3. J. Appl. Phys. 102, 116107 (2007).Google Scholar
70.Muta, H., Ieda, A., Kurosaki, K., and Yamanaka, S.: Substitution effect on the thermoelectric properties of alkaline earth titanate. Mater. Lett. 58, 3868 (2004).Google Scholar
71.Yamamoto, M., Ohta, H., and Koumoto, K.: Thermoelectric phase diagram in a CaTiO3–SrTiO3–BaTiO3 system. Appl. Phys. Lett. 90, 072101 (2007).Google Scholar
72.Ohta, H., Kim, S.W., Mune, Y., Mizoguchi, T., Nomura, K., Ohta, S., Nomura, T., Nakanishi, Y., Ikuhara, Y., Hirano, M., Hosono, H., and Koumoto, K.: Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129 (2007).CrossRefGoogle ScholarPubMed
73.Mune, Y., Ohta, H., Koumoto, K., Mizoguchi, T., and Ikuhara, Y.: Enhanced Seebeck coefficient of quantum-confined electrons in SrTiO3/SrTi0.8Nb0.2O3 superlattices. Appl. Phys. Lett. 91, 192105 (2007).CrossRefGoogle Scholar
74.Lee, K. H., Mune, Y., Ohta, H., and Koumoto, K.: Thermal stability of giant thermoelectric Seebeck coefficient for SrTiO3/SrTi0.8Nb0.2O3 superlattices at 900 K. Appl. Phys. Express. 1, 015007 (2008).Google Scholar
75.Daude, N., Gout, C., and Jouanin, C.: Electronic band structure of titanium dioxide. Phys. Rev. B 15, 3229 (1977).Google Scholar
76.Ohta, H., Huang, R., and Ikuhara, Y.: Large enhancement of the thermoelectrics Seebeck coefficient for amorphous oxide semiconductor superlattices with extremely thin conductive layers. Phys. Status Solidi RRL 2, 105 (2008).Google Scholar
77.Hicks, L.D. and Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993).CrossRefGoogle ScholarPubMed
78.By low dimensional, we mean that the system size in one or more directions is comparable with the wavelength or the mean free path of a quantum particle or an excitation.Google Scholar
79.Hicks, L.D., Harman, T.C., Sun, X., and Dresselhaus, M.S.: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 53, 10493 (1996).Google Scholar
80.Heremans, J.P.: Low-dimensional thermoelectricity. Acta Physiol. Pol. 108, 609 (2005).Google Scholar
81.Pichanusakorn, P. and Bandaru, P.: Nanostructured thermoelectrics. Mater. Sci. Eng., R 67, 19 (2010).CrossRefGoogle Scholar
82.We hereafter use the generic term “nanostructured material” to represent the low-dimensional systems and the nanocomposites in view of that classical and quantum-size effects in these systems are basically the same.Google Scholar
83.Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Marjumdar, A., and Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).Google Scholar
84.Bouake, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.K., Goddard, W.A. III, and Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).Google Scholar
85.Yang, R. and Chen, G.: Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 69, 195316 (2004).Google Scholar
86.Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R., Lee, H., Wang, D., Ren, Z., Fleurial, J.-P., and Gogna, P.: New direction for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).Google Scholar
87.Medlin, D.L. and Snyder, G.J.: Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 14, 226 (2009).Google Scholar
88.Bergman, D.J. and Levy, O.: Thermoelectric properties of a composite medium. J. Appl. Phys. 70, 6821 (1991).Google Scholar
89.Zide, J.M.O., Vashaee, D., Bian, Z.X., Zeng, G.H., Bowers, J.E., and Shakouri, A.: Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 74, 205335 (2006).CrossRefGoogle Scholar
90.Zebarjadi, M., Esfarjani, K., Shakouri, S., Bian, Z.X., Bahk, J.H., and Zeng, G.H.: Effect of nanoparticles on electron and thermoelectric transport. J. Electron. Mater. 38, 954 (2009).CrossRefGoogle Scholar
91.Li, D., Wu, Y., and Fan, R., Yang, P., and Marjumdar, A.: Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003).CrossRefGoogle Scholar
92.Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., and Marjumdar, A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).Google Scholar
93.Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., and Ren, Z.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670 (2008).Google Scholar
94.Chiritescu, C., Cahill, D.G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., and Zschack, P.: Ultra low thermal conductivity in disordered layer WSe2 crystals. Science 315, 351 (2006).Google Scholar
95.Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).Google Scholar
96.Cahill, D.G., Watson, S.K., and Pohl, R.O.: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).Google Scholar
97.Watanabe, A., Fukui, T., Nogi, K., Kizaki, Y., Noguchi, Y., and Miyayama, M.: High-quality lead-free ferroelectric ceramics prepared from flash-creating-method-derived nanopowder. J. Ceram. Soc. Jpn. 114, 97 (2006).Google Scholar
98.Zhao, X.Y., Shi, X., Chen, L.D., Zhang, W.Q., Bai, S.Q., Pei, Y.Z., and Li, X.Y.: Synthesis of YbyCo4Sb12/Y2O3 composites and their thermoelectric properties. Appl. Phys. Lett. 89, 092121 (2006).Google Scholar
99.Alleno, E., Chen, L., Chubilleau, C., Lenoir, B., Rouleau, O., Trichet, M.F., and Villeroy, B.: Thermal conductivity reduction in CoSb2-CeO2 nanocomposites. J. Electron. Mater. 39, 1966 (2010).Google Scholar
100.He, Z., Stiewe, C., Platzek, D., Karpinski, G., Muller, E., Li, S., Torpak, M., and Muhammed, M.: Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites. J. Appl. Phys. 101, 043707 (2007).Google Scholar
101.Berardan, D., Guilmeau, E., Maignan, A., and Raveau, B.: In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Commun. 146, 97 (2008).Google Scholar
102.Wang, N., Han, L., Ba, Y., Wang, Y., Wan, C., Fujinami, K., and Koumoto, K.: Effects of YSZ additions on thermoelectric properties of Nb-doped strontium titanate. J. Electron. Mater. 39, 1777 (2010).CrossRefGoogle Scholar
103.Wang, N., Han, L., He, H., Ba, Y., and Koumoto, K.: Effects of mesoporous silica addition on thermoelectric properties of Nb-doped SrTiO3. J. Alloy. Comp. 497, 308 (2010).Google Scholar
104.Wang, N., He, H., Ba, Y., Wan, C., and Koumoto, K.: Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition. J. Ceram. Soc. Jpn. 118, 1098 (2010).CrossRefGoogle Scholar
105.Sootsman, J.R., Chung, D.Y., and Kanatzidis, M.G.: New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616 (2009).Google Scholar
106.Yeo, S., Horibe, Y., Mori, S., Tseng, C.M., Chen, C.H., Khachaturyan, A.G., Zhang, C.L., and Cheong, S.-W.: Solid-state self-assembly of nanocheckerboards. Appl. Phys. Lett. 89, 233120 (2006).Google Scholar
107.Kosuga, A., Kurosaki, K., Yubuta, K., Charoenphakdee, A., Yamanaka, S., and Funahashi, R.: Thermal conductivity characterization in bulk Zn(Mn, Ga)O4 with self-assembled nanocheckerboard structures. Jpn. J. Appl. Phys. 48, 010201 (2009).Google Scholar
108.Hashin, Z. and Shtrikman, S.: On some variational principles in anisotropic and non-homogeneous elasticity. J. Mech. Phys. Solids 10, 335 (1962).Google Scholar
109.Hashin, Z. and Shtrikman, S.: Extremum principles for elastic heterogeneous media with imperfect interfaces and their application to bounding of effective moduli. J. Mech. Phys. Solids 10, 343 (1962).Google Scholar
110.Matsubara, I., Funahashi, R., Takeuchi, T., Sodeoka, S., Shimizu, T., and Ueno, K.: Fabrication of an all-oxide thermoelectric power generator. Appl. Phys. Lett. 78, 3627 (2001).Google Scholar
111.Shin, W., Murayama, N., Ikeda, K., and Sago, S.: Thermoelectric power generation using Li-doped NiO and (Ba, Sr)PbO3 module. J. Power Sources 103, 80 (2001).Google Scholar
112.Funahashi, R., Urata, S., Mizuno, K., Kouuchi, T., and Mikami, M.: Ca2.7Bi0.3Co4O9-La0.9Bi0.1NiO3 thermoelectric devices with high output power density. Appl. Phys. Lett. 85, 1036 (2004).CrossRefGoogle Scholar
113.Urata, S., Funahashi, R., Mihara, T., Kosuga, A., Sodeoka, S., and Tanaka, T.: Power generation of a p-Type Ca3Co4O9/n-type CaMnO3 module. Int. J. Appl. Ceram. Technol. 4, 535 (2007).Google Scholar
114.Uchida, K., Xiao, J., Adachi, H., Ohe, J., Takahashi, S., Leda, J., Ota, T., Kajiwara, Y., Umezawa, U., Kawai, H., Bauer, G.E.W., Maekawa, S., and Saitoh, E.: Spin Seebeck insulator. Nat. Mater. 9, 894 (2010).CrossRefGoogle ScholarPubMed
115.Humphery, T.E. and Linke, K.: Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005).Google Scholar
116.Funanashi, R., Mikami, M., Urata, S., Kitawaki, M., Kouuchi, T., and Mizuno, K.: High-throughput screening of thermoelectric oxides and power generation modules consisting of oxide unicouples. Meas. Sci. Technol. 16, 70 (2005).Google Scholar
117.Kihou, K., Lee, C.H., Miyazawa, K., Shirage, P.M., Iyo, A., and Eisaki, H.: Thermoelectric properties of LaFeAsO1-y at low temperature. J. Appl. Phys. 108, 033703 (2010).Google Scholar