Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-15T13:22:35.868Z Has data issue: false hasContentIssue false

Oxidation behavior of vacuum plasma-sprayed hafnium–tantalum nitrides

Published online by Cambridge University Press:  07 August 2015

Bradford C. Schulz
Affiliation:
Department of Metallurgical & Materials Engineering, The University of Alabama, Tuscaloosa, Alabama 35487-0202, USA
Daniel Butts
Affiliation:
Plasma Processes, LLC, Huntsville, Alabama 35811, USA
Gregory B. Thompson*
Affiliation:
Department of Metallurgical & Materials Engineering, The University of Alabama, Tuscaloosa, Alabama 35487-0202, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A series of (HfN)1−x(TaN)x, ceramics with x representing the starting powder blend compositions of 0.0, 18.8, 28.1, and 46.7 at.%, have been fabricated by vacuum plasma spraying. During the plasma spraying, the mixture lost approximately 25 at.% nitrogen facilitating the precipitation of metallic and metal-rich nitride phases. These specimens underwent static air oxidation exposure up to 1700 °C. In general, it was found that the addition of tantalum nitrides to the hafnium nitrides resulted in poorer oxidation behavior. However, the 18.8 at.% specimen deviated from this trend and had the lowest observed mass change. This specimen formed a dark-colored oxide scale, indexed as Hf6Ta2O17, which acted as a passivation layer. Within the scale, hafnium oxynitride phases were observed. A transformation pathway in forming these rhombohedral oxynitride phases is proposed by the filling in of oxygen in the light element interstitial locations of the rhombohedral ε-Hf3N2 and ζ-Hf4N3 structures.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, W., and Talmy, I.: UHTCS: Ultra-high temperature ceramic materials for extreme enviornment applications. Electrochem. Soc. Interface 16(4), 3036 (2007).Google Scholar
Perry, A.J.: The refractories HfC and HfN—A survey. Powder Metall. Int. 19(1), 2935 (1987).Google Scholar
Johansson, B.O., Helmersson, U., Hibbs, M.K., and Sundgren, J.E.: Reactively magnetron sputtered Hf-N films I. Composition and structure. J. Appl. Phys. 58(8), 31043111 (1985).Google Scholar
Zerr, A., Miehe, G., and Riedel, R.: Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nat. Mater. 2, 185189 (2003).Google Scholar
Balani, K., Gonzalez, G., and Agarwal, A.: Synthesis, microstructure characterization, and mechanical property evaluation of vacuum plasma sprayed tantalum carbide. J. Am. Ceram. Soc. 89(4), 14191425 (2006).Google Scholar
Desmaison-Brut, M., Themalin, L., Valin, F., and Boncoeur, M.: Mechanical proprties of hot-isostatically-pressed titanium nitride. Eur.Ceram. 3, 258262 (1989).Google Scholar
Limeng, L., Feng, Y., and Yu, Z.: Microstructure and mechanical properties of spark plasma sintered TaC0.7 ceramics. J. Am. Ceram. Soc. 93(10), 29452947 (2010).Google Scholar
Carney, C.M., Parthasarathy, T.A., and Cinibulk, M.K.: Oxidation resistance of hafnium diboride ceramics with additions of silicon carbide and tungsten boride or tungsten carbide. J. Am. Ceram. Soc. 94(8), 26002607 (2011).Google Scholar
Shimada, S.: Interfacial reaction on oxidation of carbides with formation of carbon. Solid State Ionics 141142, 99104 (2001).Google Scholar
Shimada, S.: A thermoanalytical study of the oxidation of ZrC and HfC powders with formation of carbon. Solid State Ionics 149(3–4), 319326 (2002).Google Scholar
Shimada, S.: Microstructural observation of ZrO2 scales formed by oxidation of ZrC single crystals with formation of carbon. Solid State Ionics 101103, 749753 (1997).Google Scholar
Shimada, S. and Inagaki, M.: A kinetic study of oxidation of niobium carbide. Solid State Ionics 6365, 312317 (1993).CrossRefGoogle Scholar
Shimada, S., Nakajima, K., and Inagaki, M.: Oxidation of single crystals of hafium carbide in a temperature range of 600° to 900°C. J. Am. Ceram. Soc. 80(7), 17491756 (1997).Google Scholar
Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Kerans, R.J.: A Model for the Oxidation of ZrB2, HfB2 and TiB2 . Acta Materialia 55(17), 59996010 (2007).Google Scholar
Brady, D.P., Fuss, F.N., and Gerstenberg, D.: Thermal oxidation and resistivity of tantalum nitride films. Thin Solid Films 66(3), 287302 (1980).Google Scholar
Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Kerans, R.J.: Effects of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2 . J. Am. Ceram. Soc. 92(5), 10791086 (2009).Google Scholar
Desmaison, M., Alexandre, N., and Desmaison, J.: Comparison of the oxidation behavior of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C) materials. J. Eur. Ceram. Soc. 17(11), 13251334 (1997).Google Scholar
Desmaison-Brut, M. and Montintin, J.: Mechanical properties and oxidation behavior of HIPed hafnium nitride ceramics. J. Eur. Ceram. Soc. 13(4), 379386 (1994).Google Scholar
Opeka, M., Talmy, I., Wuchina, E., Zaykoski, J., and Causey, S.: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19(13–14), 24052414 (1999).Google Scholar
Wuchina, E.: Oxidation of Hf based nitrides and borides. Electrochem. Soc., Proc. 16, 240252 (2004).Google Scholar
Okamoto, H.: Hf-O (hafnium-oxygen). ASM Int. 29, 124 (2008).Google Scholar
Shin, D., Arroyave, R., and Liu, Z.: Thermodynamic modeling of the Hf-Si-O system. Comput. Coupling Phase Diagrams Thermochem. 30(4), 375386 (2008).Google Scholar
Schulz, B.C., Wang, B., Morris, R.A., Butts, D., and Thompson, G.B.: Influence of hafnium carbide on vacuum plasma spray processed tantalum carbide microstructures. J. Eur. Ceram. Soc. 33(6), 12191224 (2013).Google Scholar
Trignan-Piot, L., Berardo, M., Gastaldi, J., and Giorgio, S.: Influence of plasma spraying parameters on the carbon content and porosity of TaC coatings. Surf. Coat. Technol. 79(1–3), 113118 (1996).CrossRefGoogle Scholar
Williams, C.B. and Carter, D.B.: Transmission Electron Microscopy: A Textbook for Materials Science (Springer Science, New York, 1996).Google Scholar
Morris, R.A., Wang, B., Thompson, G.B., and Butts, D.: Variation in tantalum carbide microstructures with changing carbon content. J. Appl. Ceram. Technol. 89(3), 540551 (2012).Google Scholar
Morris, R.A., Wang, B., Matson, L., and Thompson, G.B.: Microstructural formations and phase transformations pathways in hot isostatically pressed tantalum carbides. Acta Mater. 60(1), 139148 (2012).Google Scholar
ASM International: Handbook of Thermal Spray Technology (ASM International, Materials Park, OH, USA, 2004).Google Scholar
International Centre for Diffraction Data: 00-038-1478 (Alpha Hf), 2012.Google Scholar
International Centre for Diffraction Data: 04-004-6450 (HfN0.67), 2013.Google Scholar
International Centre for Diffraction Data: 04-004-6451 (HfN0.75), 2013.Google Scholar
International Centre for Diffraction Data: 00-025-1410 (HfN), 2013.Google Scholar
International Centre for Diffraction Data: 00-004-0788 (Cubic Ta), 2012.Google Scholar
International Centre for Diffraction Data: 01-089-4764 (Ta2N), 2012.Google Scholar
International Centre for Diffraction Data: 00-039-1485 (Hex TaN), 2012.Google Scholar
International Centre for Diffraction Data: 00-049-1283 (Cubic TaN), 2012.Google Scholar
International Centre for Diffraction Data: 00-006-0318 (Mono HfO2), 2013.Google Scholar
International Centre for Diffraction Data: 00-008-0342 (Tetra HfO2), 2013.Google Scholar
International Centre for Diffraction Data: 00-021-0904 (Ortho HfO2), 2013.Google Scholar
International Centre for Diffraction Data: 00-053-0550 (Cubic HfO2), 2013.Google Scholar
International Centre for Diffraction Data: 00-050-1171 (Cubic Hf2ON2), 2013.Google Scholar
International Centre for Diffraction Data: 00-050-1173 (Rhom Hf7O8N4), 2013.Google Scholar
International Centre for Diffraction Data: 33-1391 (Mono Ta2O5), 2012.Google Scholar
International Centre for Diffraction Data: 33-1390 (Tri Ta2O5), 2012.Google Scholar
International Centre for Diffraction Data: 21-1199 (Tetra Ta2O5), 2012.Google Scholar
International Centre for Diffraction Data: 25-0922 (Ortho Ta2O5), 2012.Google Scholar
International Centre for Diffraction Data: 18-1304 (Hex Ta2O5), 2012.Google Scholar
International Centre for Diffraction Data: 00-044-0998 (Ortho Hf6Ta2O17), 2015.Google Scholar
Weibel, E.R.: Stereological Methods (Academic Press/Harcourt Brace Javanovich, New York, NY, 1989).Google Scholar
Klechkovskaya, V.V., Pinkser, Z.G., and Khikova, V.I.: Nonstiochiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides. Kristallografiya 17, 506 (1972).Google Scholar
Reisman, A., Holtzberg, F., Berkenblit, M., and Berry, M.: Reactions of the group VB pentoxides with alkali oxides and carbonates. III. Thermal and X-Ray phase diagrams of the system K2O or K2CO3 with Ta2O5 . J. Am. Chem. Soc. 78(18), 45144520 (1956).Google Scholar
Humphrey, G.L.: Heats of formation of tantalum, niobium and zirconium oxides, and tantalum carbide. J. Am. Chem. Soc. 76(4), 978980 (1954).Google Scholar
Humphrey, G.L.: Heats of formation of hafnium oxide and hafnium nitride. J. Am. Chem. Soc. 75(12), 28062807 (1953).CrossRefGoogle Scholar
Rudy, E.: The Crystal structures of Hf3N2 and Hf4N3 . Metall. Mater. Trans. 1(5), 12491252 (1970).Google Scholar
Rudy, E.: Part V. Compendium of Phase Diagram Data (USAF, Wright-Patterson Air Force Base, Ohio, 1969).Google Scholar