Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T02:27:02.524Z Has data issue: false hasContentIssue false

New evidence for supported metals in the reaction of KC8 with metal chlorides

Published online by Cambridge University Press:  31 January 2011

A. Messaoudi
Affiliation:
Centre de Recherche sur la Matière Divisée, CNRS-Universitè d'Orléans, IB, Rue de la Fèrollerie, 45071 Orléans Cedex 02, France
F. Béguin
Affiliation:
Centre de Recherche sur la Matière Divisée, CNRS-Universitè d'Orléans, IB, Rue de la Fèrollerie, 45071 Orléans Cedex 02, France
Get access

Abstract

The evolution of the reaction between the binary graphitide KC8 and CoCl2 dissolved in anhydrous tetrahydrofuran (THF) has been investigated by in situ x-ray diffraction (XRD). During the reaction and whatever the host graphite (powder or HOPG), the first stage graphite intercalation compounds K(THF)2.5C24 and K(THF)1.7C24 are first formed and then transformed into higher stages. Finally the matrix is exfoliated and the phases identified are graphite, metallic cobalt, and KCl. Analyses by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) clearly show that the products are mainly located at the edge planes of the graphite, indicating that the electronic exchange occurs at the edge of the graphene layers. It is now clear that graphite-cobalt intercalation compounds cannot be obtained by this method.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Braga, P., Ripamonti, A., Savoia, D., Trombini, C., and Umani-Ronchi, A., Chem, J. C. S.. Commun., 927 (1978).CrossRefGoogle Scholar
2.Savoia, D., Trombini, C., Umani-Ronchi, A., and Verada, G., J.S.C. Chem. Commun. 540 (1981).CrossRefGoogle Scholar
3.Schäfer-Stahl, H., Dalton, J. C. S., 328 (1981).CrossRefGoogle Scholar
4.Erre, R., Messaoudi, A., and Béguin, F., Synthetic Metals 23, 493 (1988).CrossRefGoogle Scholar
5.Kaiser, P., Messaoudi, A., Bonnin, D., Erre, R., and Béguin, F., J. Chim. Phys. 86, 1787 (1989).CrossRefGoogle Scholar
6.Fürstner, A. and Weidmann, H., J. Chem. Soc. Dalton Trans., 2023 (1988).CrossRefGoogle Scholar
7.Inagaki, M., Shiwashi, Y., and Maeda, Y., J. Chim. Phys. 81, 847 (1984).CrossRefGoogle Scholar
8.Daumas, N. and Hérold, A., Acad, C. R.. Sci. Paris 268, 373 (1969).Google Scholar
9.Akuzawa, N., Fujisawa, T., and Amemiya, T., Synthetic Metals 7, 57 (1983).CrossRefGoogle Scholar
10.Béguin, F. and Setton, R., Carbon 13, 293 (1975).CrossRefGoogle Scholar
11.Hamwi, A., Touzain, P., and Bonnetain, L., Proc. 2nd Int. Carbon Conf. Baden-Baden, 143 (1976).Google Scholar
12.Hérold, A., Bull. Soc. Chim. Fr. 999 (1955).Google Scholar
13.Béguin, F., Hamwi, A., Touzain, P., and Setton, R., Mater. Sci. Eng. 40, 167 (1979).CrossRefGoogle Scholar
14.Messaoudi, A., Erre, R., and Beguin, F., Carbon 29, 515 (1991).CrossRefGoogle Scholar