Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T03:46:52.520Z Has data issue: false hasContentIssue false

Neutron reflectometry analysis of Li4Ti5O12/organic electrolyte interfaces: characterization of surface structure changes and lithium intercalation properties

Published online by Cambridge University Press:  19 September 2016

Masaaki Hirayama*
Affiliation:
Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
Takumi Shibusawa
Affiliation:
Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
Ryo Yamaguchi
Affiliation:
Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
KyungSu Kim
Affiliation:
Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
Sou Taminato
Affiliation:
Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
Norifumi L. Yamada
Affiliation:
Neutron Science Division, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki 319-1106, Japan
Masao Yonemura
Affiliation:
Neutron Science Division, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki 319-1106, Japan
Kota Suzuki
Affiliation:
Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
Ryoji Kanno
Affiliation:
Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The structure changes and lithium intercalation properties in the surface region of Li4Ti5O12 were investigated using epitaxial Li4Ti5O12(111) film model electrodes. The discharge–charge measurements, which were conducted with 1 mol/dm3 LiPF6-containing propylene carbonate, revealed that a 23.8 nm-thick film exhibited a small capacity of 115 mA h/g compared to the theoretical value of 175 mA h/g. In situ neutron reflectometry and ex situ x-ray diffractometry and reflectometry indicated that an irreversible phase change had occurred in the 10-nm surface region of Li4Ti5O12 during the initial reaction processes. The level of deterioration of the surface structure was significantly reduced by decreasing the LiPF6 concentration; in addition, side reactions of the cell components with the electrolyte species, and their products, may be associated with the deterioration of the Li4Ti5O12 surface. The surface reactions have a significant impact on the capacity of lithium intercalation in nano-sized Li4Ti5O12.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mohri, M., Yanagisawa, N., Tajima, Y., Tanaka, H., Mitate, T., Nakajima, S., Yoshida, M., Yoshimoto, Y., Suzuki, T., and Wada, H.: Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. J. Power Sources 26, 545 (1989).Google Scholar
Kanno, R., Takeda, Y., Ichikawa, T., Nakanishi, K., and Yamamoto, O.: Carbon as negative electrodes in lithium secondary cells. J. Power Sources 26, 535 (1989).Google Scholar
Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B.: Li x CoO2 (0 < x < 1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783 (1980).Google Scholar
Croguennec, L., Pouillerie, C., Mansour, A.N., and Delmas, C.: Structural characterisation of the highly deintercalated Li x Ni1.02O2 phases (with x ≤ 0.30). J. Mater. Chem. 11, 131 (2001).Google Scholar
Thackeray, M.M.: Manganese oxides for lithium batteries. Prog. Solid State Chem. 25, 1 (1997).Google Scholar
Thackeray, M.M., David, W.I.F., Bruce, P.G., and Goodenough, J.B.: Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461 (1983).CrossRefGoogle Scholar
Ronci, F., Reale, P., Scrosati, B., Panero, S., Rossi Albertini, V., Perfetti, P., di Michiel, M., and Merino, J.M.: High-resolution in-situ structural measurements of the Li4/3Ti5/3O4 “Zero-Strain” insertion material. J. Phys. Chem. B 106, 3082 (2002).Google Scholar
Panero, S., Reale, P., Ronci, F., Scrosati, B., Perfetti, P., and Rossi Albertini, V.: Refined, in-situ EDXD structural analysis of the Li[Li1/3Ti5/3]O4 electrode under lithium insertion-extraction. Phys. Chem. Chem. Phys. 3, 845 (2001).Google Scholar
Scharner, S., Weppner, W., and Schmid-Beurmann, P.: Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67 O4 spinel. J. Electrochem. Soc. 146, 857 (1999).Google Scholar
Wang, Y., Liu, H., Wang, K., Eiji, H., Wang, Y., and Zhou, H.: Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. J. Mater. Chem. 19, 6789 (2009).CrossRefGoogle Scholar
Jaiswal, A., Horne, C.R., Chang, O., Zhang, W., Kong, W., Wang, E., Chern, T., and Doeff, M.M.: Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-Ion batteries. J. Electrochem. Soc. 156, A1041 (2009).Google Scholar
Borghols, W.J.H., Wagemaker, M., Lafont, U., Kelder, E.M., and Mulder, F.M.: Size effects in the Li4+x Ti5O12 spinel. J. Am. Chem. Soc. 131, 17786 (2009).Google Scholar
Guerfi, A.: Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. J. Power Sources 119–121, 88 (2003).Google Scholar
Hirayama, M., Kim, K., Toujigamori, T., Cho, W., and Kanno, R.: Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes. Dalton Trans. 40, 2882 (2011).Google Scholar
Hirayama, M., Ido, H., Kim, K., Cho, W., Tamura, K., Mizuki, J.i., and Kanno, R.: Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. J. Am. Chem. Soc. 132, 15268 (2010).Google Scholar
Hirayama, M., Sonoyama, N., Ito, M., Minoura, M., Mori, D., Yamada, A., Tamura, K., Mizuki, J., and Kanno, R.: Characterization of electrode/electrolyte interface with x-ray reflectometry and epitaxial-film LiMn2O4 electrode. J. Electrochem. Soc. 154, A1065 (2007).Google Scholar
Hirayama, M., Sonoyama, N., Abe, T., Minoura, M., Ito, M., Mori, D., Yamada, A., Kanno, R., Terashima, T., Takano, M., Tamura, K., and Mizuki, J.: Characterization of electrode/electrolyte interface for lithium batteries using in situ synchrotron x-ray reflectometry—A new experimental technique for LiCoO2 model electrode. J. Power Sources 168, 493 (2007).Google Scholar
Bryngelsson, H., Stjerndahl, M., Gustafsson, T., and Edström, K.: How dynamic is the SEI? J. Power Sources 174, 970 (2007).CrossRefGoogle Scholar
Herstedt, M., Andersson, A.M., Rensmo, H., Siegbahn, H., and Edström, K.: Characterisation of the SEI formed on natural graphite in PC-based electrolytes. Electrochim. Acta 49, 4939 (2004).Google Scholar
Eriksson, T., Andersson, A.M., Bishop, A.G., Gejke, C., Gustafsson, T., and Thomas, J.O.: Surface analysis of LiMn2O4 electrodes in carbonate-based electrolytes. J. Electrochem. Soc. 149, A69 (2002).Google Scholar
Liu, J., Bian, P., Li, J., Ji, W., Hao, H., and Yu, A.: Gassing behavior of lithium titanate based lithium ion batteries with different types of electrolytes. J. Power Sources 286, 380 (2015).CrossRefGoogle Scholar
He, M., Castel, E., Laumann, A., Nuspl, G., Novak, P., and Berg, E.J.: In situ gas analysis of Li4Ti5O12 based electrodes at elevated temperatures. J. Electrochem. Soc. 162, A870 (2015).CrossRefGoogle Scholar
Song, M-S., Kim, R-H., Baek, S-W., Lee, K-S., Park, K., and Benayad, A.: Is a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12 electrode and electrolyte. J. Mater. Chem. A 2, 631 (2014).Google Scholar
He, Y-B., Liu, M., Huang, Z-D., Zhang, B., Yu, Y., Li, B., Kang, F., and Kim, J-K.: Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J. Power Sources 239, 269 (2013).Google Scholar
Lu, X., Gu, L., Hu, Y-S., Chiu, H-C., Li, H., Demopoulos, G.P., and Chen, L.: New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode. J. Am. Chem. Soc. 137, 1581 (2015).CrossRefGoogle ScholarPubMed
Kitta, M., Akita, T., and Kohyama, M.: Spontaneous Li-ion transfer from spinel Li4Ti5O12 surfaces: Deterioration at Li4Ti5O12/electrolyte interfaces stored at room temperature. J. Electrochem. Soc. 162, A1272 (2015).Google Scholar
Kitta, M., Akita, T., Maeda, Y., and Kohyama, M.: Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Langmuir 28, 12384 (2012).Google Scholar
Kim, K., Toujigamori, T., Suzuki, K., Taminato, S., Tamura, K., Mizuki, J., Hirayama, M., and Kanno, R.: Characterization of nano-sized epitaxial Li4Ti5O12(110) film electrode for lithium batteries. Electrochemistry 80, 800 (2012).CrossRefGoogle Scholar
Majkrzak, C.F.: Applications of specular neutron reflectometry in materials science. J. Neutron Res. 7, 159 (1999).Google Scholar
Yonemura, M., Hirayama, M., Suzuki, K., Kanno, R., Torikai, N., and Yamada, N.L.: Development of spectroelectrochemical cells for in situ neutron reflectometry. J. Phys.: Conf. Ser. 502, 012054 (2014).Google Scholar
Parratt, L.G.: Surface studies of solids by total reflection of x-rays. Phys. Rev. 95, 359 (1954).Google Scholar
Nelson, A.: Co-refinement of multiple contrast neutron/x-ray reflectivity data using MOTOFIT. J. Appl. Crystallogr. 39, 273 (2006).Google Scholar
Parratt, L.: Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359 (1954).Google Scholar
Yamada, N.L., Torikai, N., Mitamura, K., Sagehashi, H., Sato, S., Seto, H., Sugita, T., Goko, S., Furusaka, M., Oda, T., Hino, M., Fujiwara, T., Takahashi, H., and Takahara, A.: Design and performance of horizontal-type neutron reflectometer SOFIA at J-PARC/MLF. Eur. Phys. J. Plus 126, 1 (2011).Google Scholar
Mitamura, K., Yamada, N.L., Sagehashi, H., Torikai, N., Arita, H., Terada, M., Kobayashi, M., Sato, S., Seto, H., Goko, S., Furusaka, M., Oda, T., Hino, M., Jinnai, H., and Takahara, A.: Novel neutron reflectometer SOFIA at J-PARC/MLF for in-situ soft-interface characterization. Polym. J. 45, 100 (2013).CrossRefGoogle Scholar
Hirayama, M., Yonemura, M., Suzuki, K., Torikai, N., Smith, H., Watkinsand, E., Majewski, J., and Kanno, R.: Surface characterization of LiFePO4 epitaxial thin films by x-ray/neutron reflectometry. Electrochemistry 78, 413 (2010).Google Scholar
Ohzuku, T., Ueda, A., and Yamamoto, N.: Zero-strain insertion material of Li [ Li1/3Ti5/3] O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431 (1995).Google Scholar
Supplementary material: File

Hirayama supplementary material

Figures S1-S2

Download Hirayama supplementary material(File)
File 219.5 KB