Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T10:23:26.911Z Has data issue: false hasContentIssue false

Nanoindentation: Application to dental hard tissue investigations

Published online by Cambridge University Press:  01 August 2006

L. Angker
Affiliation:
Dental Research Group, Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
M.V. Swain*
Affiliation:
Biomaterials, School of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealandand Biomaterials, Faculty of Dentistry, Sydney Dental Hospital, University of Sydney, Surry Hills, New South Wales 2010, Australia
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the last decade, most publications on the mechanical properties of dental calcified tissues were based on nanoindentation investigation. This technique has allowed a better understanding of the mechanical behavior of enamel, dentin, and cementum at a nanoscale. The indentations are normally carried out using pointed or spherical indenters. Hardness and elastic modulus are measured as a function of indenter penetration depth and from the elastic recovery upon unloading. The unique microstructure of each calcified tissue significantly contributes to the variations in the mechanical properties measured. As complex hydrated biological composites, the relative proportions of the composite components, namely, inorganic material (hydroxyapatite), organic material, and water, determines the mechanical properties of the dental hard tissues. Many pathological conditions affecting dental hard tissues cause changes in mineral levels, crystalline structures, and mechanical properties that may be probed by nanoindentation. This review focuses on relevant nanoindentation techniques and their applications to enamel, dentin, and cementum investigations.

Type
Reviews
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Angker, L., Nockolds, C., Swain, M.V., Kilpatrick, N.: Correlating the mechanical properties to the mineral content of carious dentine: A comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals. Arch. Oral Biol. 49, 369 (2004).CrossRefGoogle Scholar
2.Arends, J., Ruben, J., Jongebloed, W.L.: Dentine caries in vivo: Combined scanning electron microscopic and microradiographic investigation. Caries Res. 23, 36 (1989).CrossRefGoogle ScholarPubMed
3.Featherstone, J.B.D., Cate, J.M. ten, Shariati, M., Arends, J.: Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profile. Caries Res. 17, 385 (1983).CrossRefGoogle Scholar
4.Kodaka, T., Debari, K., Yamada, M., Kuroiwa, M.: Correlation between microhardness and mineral content in sound human enamel. Caries Res. 26, 139 (1992).CrossRefGoogle ScholarPubMed
5.Bosch, J.J. Ten, Angmar-Mansson, B.: A review of quantitative methods for studies of mineral content of intra-oral incipent carious lesions. J. Dent. Res. 70, 2 (1990).CrossRefGoogle Scholar
6.Angker, L., Swain, M.V., Kilpatrick, N.: Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation. J. Biomech. 38, 1535 (2005).CrossRefGoogle ScholarPubMed
7.Darendeliler, M.A., Kharbanda, O.P., Chan, E.K., Srivicharnkul, P., Rex, T., Swain, M.V., Jones, A.S., Petocz, P.: Root resorption and its association with alterations in physical properties, mineral contents and resorption craters in human premolars following application of light and heavy controlled orthodontic forces. Orthod. Craniofac. Res. 7, 79 (2004).CrossRefGoogle ScholarPubMed
8.Mahoney, E., Ismail, F.S., Kilpatrick, N., Swain, M.: Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. Eur. J. Oral Sci. 112, 497 (2004).CrossRefGoogle ScholarPubMed
9.Marshall, G.W., Habelitz, S., Gallagher, R., Balooch, M., Balooch, G., Marshall, S.J.: Nanomechanical properties of hydrated carious human dentin. J. Dent. Res. 80, 1768 (2001).CrossRefGoogle ScholarPubMed
10.Habelitz, S., Marshall, S.J., Marshall, G.W. Jr. Balooch, M.: Mechanical properties of human dental enamel on the nanometre scale. Arch. Oral Biol. 46, 173 (2001).CrossRefGoogle ScholarPubMed
11.Angker, L., Swain, M.V., Kilpatrick, N.: Micro-mechanical characterisation of the properties of primary tooth dentine. J. Dent. 31, 261 (2003).CrossRefGoogle ScholarPubMed
12.Grayson, W., Marshall, G.W.J.: Dentine: Microstructure and characterization. Quintessence Int. 24, 606 (1993).Google Scholar
13.Marshall, G.W. Jr. Marshall, S.J., Kinney, J.H., Balooch, M.: The dentin substrate: Structure and properties related to bonding. J. Dent. 25, 441 (1997).CrossRefGoogle ScholarPubMed
14.Malek, S., Darendeliler, M.A., Swain, M.V.: Physical properties of root cementum: Part I. A new method for 3-dimensional evaluation. Am. J. Orthod. Dentofacial Orthop. 120, 198 (2001).CrossRefGoogle Scholar
15.Srivicharnkul, P., Kharbanda, O.P., Swain, M.V., Petocz, P., Darendeliler, M.A.: Physical properties of root cementum: Part 3. Hardness and elastic modulus after application of light and heavy forces. Am. J. Orthod. Dentofacial Orthop. 127, 168 (2005).CrossRefGoogle ScholarPubMed
16.Van Meerbeek, B., Willems, G., Celis, J.P., Roos, J.R., Braem, M., Lambrechts, P., Vanherle, G.: Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J. Dent. Res. 72, 1434 (1993).CrossRefGoogle ScholarPubMed
17.Waters, N.E. Some mechanical and physical properties of teeth, in Mechanical Properties of Biological Materials, edited by Vincent, J.F. and Curry, J.D. (Cambridge University Press, Cambridge, UK, 1980), p. 99.Google Scholar
18.Mencik, J., Swain, M.: Micro-indentation tests with pointed indenters. Mater. Forum 18, 277 (1994).Google Scholar
19.Angker, L., Nijhof, N., Swain, M.V., Kilpatrick, N.M.: Influence of hydration and mechanical characterization of carious primary dentine using an ultra-micro indentation system (UMIS). Eur. J. Oral Sci. 112, 231 (2004).CrossRefGoogle ScholarPubMed
20.Balooch, M., Wu-Magidi, I.C., Balazs, A., Lundkvist, A.S., Marshall, S.J., Marshall, G.W., Siekhaus, W.J., Kinney, J.H.: Viscoelastic properties of demineralized human dentin measured in water with atomic force microscope (AFM)-based indentation. J. Biomed. Mater. Res. 40, 539 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
21.Oliver, W., Pharr, G.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
22.Bell, T., Bendeli, J., Field, J., Swain, M., Thwaite, E.: The determination of surface plastic and elastic properties by ultra micro indentation system. Metrologia 28, 463 (1992).CrossRefGoogle Scholar
23.Field, J.S., Swain, M.V.: A simple predictive model for spherical indenter. J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
24.Suganuma, M., Swain, M.V.: Simple method and critical comparison of frame compliance and indenter area function for nanoindentation. J. Mater. Res. 19, 3484 (2004).CrossRefGoogle Scholar
25.Poolthong, S. Determination of the mechanical properties of enamel, dentine and cementum by an ultra micro-identation system. Ph.D. Thesis. University of Sydney, Sydney, Australia (1998).Google Scholar
26.Nanci, A. Enamel: Composition, formation, and structure, in ten Cates Oral Histology Development, Structure, and Function, edited by Nanci, A. (Mosby, St. Louis, MO, 2003) p. 145.Google Scholar
27.Boyde, A. Amelogenesis and the structure of enamel, in Scientific Foundations of Dentistry, edited by Cohen, B. and Kramer, I. (Heinenmann Medical Books, London, UK, 1976), p. 335.Google Scholar
28.Anderson, P., Elliott, J.C.: Rates of mineral loss in human enamel during in vitro demineralization perpendicular and parallel to the natural surface. Caries Res. 34, 33 (2000).CrossRefGoogle Scholar
29.Cuy, J.L., Mann, A.B., Livi, K.J., Teaford, M.F., Weihs, T.P.: Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 47, 281 (2002).CrossRefGoogle ScholarPubMed
30.Ashby, M.F., Jones, D.R.H.: Engineering Materials: An Introduction to Their Properties and Applications, 1st ed. (Pergamon Press, Oxford, UK, 1985) p. 25.Google Scholar
31.Spears, I.: A three-dimensional finite element model of prismatic enamel: A re-appraisal of the data on the Young's modulus of enamel. J. Dent. Res. 76, 1690 (1997).CrossRefGoogle ScholarPubMed
32.Ge, J., Cui, F.Z., Wang, X.M., Feng, H.L.: Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials 26, 3333 (2005).CrossRefGoogle ScholarPubMed
33.Wilson, P.R., Beynon, A.D.: Mineralization differences between human deciduous and permanent enamel measured by quantitative microradiography. Arch. Oral Biol. 34, 85 (1989).CrossRefGoogle ScholarPubMed
34.Mejare, I., Stenlund, H.: Caries rates for the mesial surface of the first permanent molar and the distal surface of the second primary molar from 6 to 12 years of age in Sweden. Caries Res. 34, 454 (2000).CrossRefGoogle ScholarPubMed
35.Lippert, F., Parker, D.M., Jandt, K.D.: Susceptibility of deciduous and permanent enamel to dietary acid-induced erosion studied with atomic force microscopy nanoindentation. Eur. J. Oral Sci. 112, 61 (2004).CrossRefGoogle ScholarPubMed
36.Hunter, M.L., West, N.X., Hughes, J.A., Newcombe, R.G., Addy, M.: Relative susceptibility of deciduous and permanent dental hard tissues to erosion by a low pH fruit drink in vitro. J. Dent. 28, 265 (2000).CrossRefGoogle Scholar
37.Mahoney, E., Holt, A., Swain, M., Kilpatrick, N.: The hardness and modulus of elasticity of primary molar teeth: An ultra-micro-indentation study. J. Dent. 28, 589 (2000).CrossRefGoogle ScholarPubMed
38.Lussi, A., Kohler, N., Zero, D., Schaffner, M., Megert, B.: A comparison of the erosive potential of different beverages in primary and permanent teeth using an in vitro model. Eur. J. Oral Sci. 108, 110 (2000).CrossRefGoogle ScholarPubMed
39.Urabe, I., Nakajima, S., Sano, H., Tagami, J.: Physical properties of the dentin-enamel junction region. Am. J. Dent. 13, 129 (2000).Google ScholarPubMed
40.Balooch, G., Marshall, G.W., Marshall, S.J., Warren, O.L., Asif, S.A., Balooch, M.: Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J. Biomech. 37, 1223 (2004).CrossRefGoogle ScholarPubMed
41.Marshall, G.W. Jr. Balooch, M., Gallagher, R.R., Gansky, S.A., Marshall, S.J.: Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J. Biomed. Mater. Res. 54, 87 (2001).3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
42.Barbour, M.E., Parker, D.M., Allen, G.C., Jandt, K.D.: Human enamel dissolution in citric acid as a function of pH in the range 2.30 < or = pH < or = 6.30: A nanoindentation study. Eur. J. Oral Sci. 111, 258 (2003).CrossRefGoogle ScholarPubMed
43.Barbour, M.E., Parker, D.M., Jandt, K.D.: Enamel dissolution as a function of solution degree of saturation with respect to hydroxyapatite: A nanoindentation study. J. Colloid Interface Sci. 265, 9 (2003).CrossRefGoogle ScholarPubMed
44.Lippert, F., Parker, D.M., Jandt, K.D.: In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J. Colloid Interface Sci. 280, 442 (2004).CrossRefGoogle ScholarPubMed
45.Mahoney, E., Beattie, J., Swain, M., Kilpatrick, N.: Preliminary in vitro assessment of erosive potential using the ultra-micro-indentation system. Caries Res. 37, 218 (2003).CrossRefGoogle ScholarPubMed
46.Attin, T., Vollmer, D., Wiegand, A., Attin, R., Betke, H.: Subsurface microhardness of enamel and dentin after different external bleaching procedures. Am. J. Dent. 18, 8 (2005).Google ScholarPubMed
47.de Oliveira, R., Leme, A.F. Paes, Giannini, M.: Effect of a carbamide peroxide bleaching gel containing calcium or fluoride on human enamel surface microhardness. Braz. Dent. J. 16, 103 (2005).CrossRefGoogle ScholarPubMed
48.Leonard, R.H., Teixeira, E.C., Garland, G.E., Ritter, A.V.: Effect on enamel microhardness of two consumer-available bleaching solutions when compared with a dentist-prescribed, home-applied bleaching solution and a control. J. Esthet. Restor. Dent. 17, 343 (2005).CrossRefGoogle ScholarPubMed
49.Lewinstein, I., Fuhrer, N., Churaru, N., Cardash, H.: Effect of different peroxide bleaching regimens and subsequent fluoridation on the hardness of human enamel and dentin. J. Prosthet. Dent. 92, 337 (2004).CrossRefGoogle ScholarPubMed
50.Unlu, N., Cobankara, F.K., Altinoz, C., Ozer, F.: Effect of home bleaching agents on the microhardness of human enamel and dentin. J. Oral Rehabil. 31, 57 (2004).CrossRefGoogle ScholarPubMed
51.Watanabe, M.M., Rodrigues, J.A., Marchi, G.M., Ambrosano, G.M.: In vitro cariostatic effect of whitening toothpastes in human dental enamel-microhardness evaluation. Quintessence Int. 36, 467 (2005).Google ScholarPubMed
52.Yu, D., Sipos, T., Wu, M.M., Bilbault, T., Lynch, M.C., Naleway, C.: Effect of fluoride/essential oils-containing mouth rinse on the microhardness of demineralized bovine enamel. Am. J. Dent. 17, 216 (2004).Google ScholarPubMed
53.Seghi, R.R., Denry, I.: Effects of external bleaching on indentation and abrasion characteristics of human enamel in vitro. J. Dent. Res. 71, 1340 (1992).CrossRefGoogle ScholarPubMed
54.Nizam, B.R. Hairul, Lim, C.T., Chng, H.K., Yap, A.U.: Nanoindentation study of human premolars subjected to bleaching agent. J. Biomech. 38, 2204 (2005).CrossRefGoogle Scholar
55.Lopes, G.C., Bonissoni, L., Baratieri, L.N., Vieira, L.C., Monteiro, S. Jr.: Effect of bleaching agents on the hardness and morphology of enamel. J. Esthet. Restor. Dent. 14, 24 (2002).CrossRefGoogle ScholarPubMed
56.Rodrigues, J.A., Marchi, G.M., Ambrosano, G.M., Heymann, H.O., Pimenta, L.A.: Microhardness evaluation of in situ vital bleaching on human dental enamel using a novel study design. Dent. Mater. 21, 1059 (2005).CrossRefGoogle ScholarPubMed
57.Jalevik, B., Klingberg, G.A.: Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int. J. Paediatr. Dent. 12, 24 (2002).CrossRefGoogle ScholarPubMed
58.Kinney, J.H., Balooch, M., Marshall, S.J., Marshall, G.W. Jr. Weihs, T.P.: Atomic force microscope measurements of the hardness and elasticity of peritubular and intertubular human dentin. J. Biomech. Eng. 118, 133 (1996).CrossRefGoogle ScholarPubMed
59.Hosoya, Y., Marshall, G.W.: The nano-hardness and elastic modulus of sound deciduous canine dentin and young premolar dentin: Preliminary study. J. Mater. Sci.: Mater. Med. 16, 1 (2005).Google Scholar
60.Poolthong, S., Swain, M., Sumii, T., Mori, T.: Effect of tubule orientation on some mechanical properties of dentine. J. Dent. Res. 77, 847 (1998).Google Scholar
61.Pashley, D., Okabe, A., Parham, P.: The relationship between dentine microhardness and tubules density. Endo. Dent. Trauma 1, 176 (1985).CrossRefGoogle ScholarPubMed
62.Sumikawa, D.A., Marshall, G.W., Gee, L., Marshall, S.J.: Microstructure of primary tooth dentine. Pediatr. Dent. 21, 439 (2000).Google Scholar
63.Poolthong, S., Low, D., Swain, M., Sumii, T., Mori, T.: Prediction of positional dependence of mechanical properties of dentine. J. Dent. Res. 77, 917 (1998).Google Scholar
64.Habelitz, S., Marshall, G.W. Jr. Balooch, M., Marshall, S.J.: Nanoindentation and storage of teeth. J. Biomech. 35, 995 (2002).CrossRefGoogle ScholarPubMed
65.Burrow, M.F., Nopnakeepong, U., Phrukkanon, S.: A comparison of microtensile bond strengths of several dentin bonding systems to primary and permanent dentin. Dent. Mater. 18, 239 (2002).CrossRefGoogle ScholarPubMed
66.el-Kalla, I.H., Garcia-Godoy, F.: Bond strength and interfacial micromorphology of compomers in primary and permanent teeth. Int. J. Paediatr. Dent. 8, 103 (1998).CrossRefGoogle ScholarPubMed
67.Hickel, R., Manhart, J.M. Glass-ionomer and compomers in pediatric dentistry, in Advances in Glass-Ionomer Cements, edited by Davidson, C.L. and Mjor, I.A. (Quintessence, Chicago, IL, 1999).Google Scholar
68.Hirayama, A.: Experimental analytical electron microscopic studies on the quantitative analysis of elemental concentrations in biological thin specimens and its application to dental science. Shikwa Gakuho 90, 1019 (1990).Google ScholarPubMed
69.Arends, J., Inaba, D., Ruben, J.: Major topics in quantitative microradiography of enamel and dentin: R parameter, mineral distribution visualization, and hyper-remineralization. Adv. Dent. Res. 11, 403 (1997).CrossRefGoogle Scholar
70.Angker, L., Nockolds, C., Swain, M.V., Kilpatrick, N.: Quantitative analysis of the mineral content of sound and carious primary dentine using BSE imaging. Arch. Oral Biol. 49, 99 (2004).CrossRefGoogle ScholarPubMed
71.Marshall, G.W., Yucel, N., Balooch, M., Kinney, J.H., Habelitz, S., Marshall, S.J.: Sodium hypochlorite alterations on dentin and dentin collagen. Surf. Sci. 491, 444 (2001).CrossRefGoogle Scholar
72.Kahler, B., Swain, M.V., Moule, A.: Fracture toughening mechanisms responsible for differences in work to fracture of hydrated and dehydrated dentine. J. Biomech. 36, 229 (2003).CrossRefGoogle ScholarPubMed
73.Toledano, M., Osorio, R., Osorio, E., Prati, C., Carvalho, R.M.: Microhardness of acid-treated and resin infiltrated human dentine. J. Dent. 33, 349 (2005).CrossRefGoogle ScholarPubMed
74.Berkovitz, B., Holland, G., Moxham, B.: Oral Anatomy, Histology and Embryology, 3rd ed. (Mosby, St. Louis, MO, 2002), p. 168.Google Scholar
75.Ho, S.P., Goodis, H., Balooch, M., Nonomura, G., Marshall, S.J., Marshall, G.: The effect of sample preparation technique on determination of structure and nanomechanical properties of human cementum hard tissue. Biomaterials 25, 4847 (2004).CrossRefGoogle ScholarPubMed
76.Ho, S.P., Balooch, M., Goodis, H.E., Marshall, G.W., Marshall, S.J.: Ultrastructure and nanomechanical properties of cementum dentin junction. J. Biomed. Mater. Res. A 68, 343 (2004).CrossRefGoogle ScholarPubMed
77.Malek, S., Darendeliler, M.A., Rex, T., Kharbanda, O.P., Srivicharnkul, P., Swain, M.V., Petocz, P.: Physical properties of root cementum: Part 2. Effect of different storage methods. Am. J. Orthod. Dentofacial Orthop. 124, 561 (2003).CrossRefGoogle ScholarPubMed