Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-29T04:31:29.017Z Has data issue: false hasContentIssue false

Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

Published online by Cambridge University Press:  02 March 2015

Brian D. Wirth*
Affiliation:
Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996-2300, USA; and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Xunxiang Hu
Affiliation:
Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996-2300, USA; and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Aaron Kohnert
Affiliation:
Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996-2300, USA
Donghua Xu
Affiliation:
Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996-2300, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

It is well established that exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. This article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: William J. Weber

References

REFERENCES

Odette, G.R., Wirth, B.D., Bacon, D.J., and Ghoneim, N.M.: Multiscale-multiphysics modeling of radiation-damaged materials: Embrittlement of pressure vessel steels. MRS Bull. 26, 176 (2001).Google Scholar
Bloom, E.E.: The challenge of developing structural materials for fusion power systems. J. Nucl. Mater. 258263, 7 (1998).Google Scholar
Bloom, E.E., Ghoneim, N., Jone, R., Kurtz, R., Odette, G.R., Rowecliffe, A., Smith, D., and Wiffen, F.W.: Advanced Materials Program, appendix D of the VLT roadmap. (1999). Available at http://vlt.ucsd.edu/.Google Scholar
Zinkle, S.J. and Ghoniem, N.M.: Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 5152, 55 (2000).CrossRefGoogle Scholar
Muroga, T., Gasparotto, M., and Zinkle, S.J.: Overview of materials research for fusion reactors. Fusion Eng. Des. 6162, 13 (2002).Google Scholar
Victoria, M., Baluc, N., Bailat, C., Dai, Y., Luppo, M.I., Schaublin, R., and Singh, B.N.: The microstructure and associated tensile properties of irradiated fcc and bcc metals. J. Nucl. Mater. 276, 114 (2000).Google Scholar
Diaz de la Rubia, T., Zbib, H.M., Khraishi, T.A., Wirth, B.D., Victoria, M., and Caturla, M.J.: Multiscale modelling of plastic flow localization in irradiated materials. Nature 406, 871 (2000).Google Scholar
Wirth, B.D., Odette, G.R., Marian, J., Ventelon, L., Young, J.A., and Zepeda-Ruiz, L.A.: Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. J. Nucl. Mater. 329333, 103 (2004).CrossRefGoogle Scholar
Ackland, G.J., Bacon, D.J., Calder, A.F., and Harry, T.: Computer simulation of point defect properties in dilute Fe–Cu alloy using a many-body interatomic potential. Philos. Mag. A 75, 713 (1997).CrossRefGoogle Scholar
Stoller, R.E., Odette, G.R., and Wirth, B.D.: Primary damage formation in bcc iron. J. Nucl. Mater. 251, 49 (1997).Google Scholar
Phythian, W.J., Stoller, R.E., Foreman, A.J.E., Calder, A.F., and Bacon, D.J.: A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J. Nucl. Mater. 223, 245 (1995).Google Scholar
Gibson, J.B., Goland, A.N., Milgram, M., and Vineyard, G.H.: Dynamics of radiation damage. Phys. Rev. 120, 1229 (1960).CrossRefGoogle Scholar
Averback, R.S. and Diaz de la Rubia, T.: Displacement damage in irradiated metals and semiconductors. Solid State Phys. 51, 281 (1998).CrossRefGoogle Scholar
Setyawan, W., Nandipati, G., Roch, K.J., Heinisch, H.L., Wirth, B.D., and Kurtz, R.J.: Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations. J. Nucl. Mater. (2015, in press). doi:10.1016/j.jnucmat.2014.12.056.Google Scholar
Soneda, N. and Diaz de la Rubia, T.: Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation. Philos. Mag. A 78, 995 (1998).CrossRefGoogle Scholar
Wirth, B.D., Odette, G.R., Maroudas, D., and Lucas, G.E.: Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. J. Nucl. Mater. 276, 33 (1999).CrossRefGoogle Scholar
Anento, N., Serra, A., and Osetsky, Y.N.: Atomistic study of multi-mechanism diffusion by self-interstitial defects in α-Fe. Model. Simul. Mater. Sci. Eng. 18, 025008 (2010).CrossRefGoogle Scholar
Wirth, B.D., Odette, G.R., and Stoller, R.E.: Recent progress toward an integrated multiscale-multiphysics model of reactor pressure vessel embrittlement, in Advances in Materials Theory and Modeling–Bridging over Multiple-length and Time Scales (Mater. Res. Soc. Symp. Proc. 677, San Francisco, CA, 2001) 677-AA5.2.Google Scholar
Heinisch, H.L. and Singh, B.N.: Stochastic annealing simulation of intracascade defect interactions. J. Nucl. Mater. 251, 77 (1997).Google Scholar
Caturla, M.J., Soneda, N., Alonso, E.A., Wirth, B.D., and Diaz de la Rubia, T.: Comparative study of radiation damage accumulation in Cu and Fe. J. Nucl. Mater. 276, 13 (2000).CrossRefGoogle Scholar
Monasterio, P.R., Wirth, B.D., and Odette, G.R.: Kinetic Monte Carlo modeling of cascade aging and damage accumulation in Fe–Cu alloys. J. Nucl. Mater. 361, 127 (2007).CrossRefGoogle Scholar
Nandipati, G., Setyawan, W., Heinisch, H.L., Roche, K.J., Kurtz, R.J., and Wirth, B.D.: Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo simulation of tungsten cascade aging. J. Nucl. Mater. (2015, in press). doi: http://dx.doi.org/10.1016/j.nucmat.2014.09.067.Google Scholar
Eldrup, M. and Singh, B.N.: Void nucleation in fcc and bcc metals: A comparison of neutron irradiated copper and iron. Mater. Sci. Forum 363365, 79 (2001).Google Scholar
Wirth, B.D., Odette, G.R., Asoka-Kumar, P., Howell, R.H., and Sterne, P.A.: Characterization of nanostructural features in irradiated reactor pressure vessel model alloys. In Proceedings of the 10th International Symposium on Environmental Degradation of Materials in Light Water Reactors, Was, G.S. ed.; National Association of Corrosion Engineers 2002.Google Scholar
Odette, G.R.: On mechanisms controlling swelling in ferritic and martensitic alloys. J. Nucl. Mater. 155157, 921 (1988).CrossRefGoogle Scholar
Matsui, H., Fukumoto, K., Smith, D.L., Chung, H.M., van Witzenburg, W., and Votinov, S.N.: Status of vanadium alloys for fusion reactors. J. Nucl. Mater. 233237, 92 (1996).Google Scholar
Schaublin, R., Spatig, P., and Victoria, M.: Microstructure assessment of the low activation ferritic/martensitic steel F82H. J. Nucl. Mater. 258263, 1178 (1998).CrossRefGoogle Scholar
Rowcliffe, A.F., Robertson, J.P., Klueh, R.L., Shiba, K., Alexander, D.J., Grossbeck, M.L., and Jitsukawa, S.: Fracture toughness and tensile behavior of ferritic–martensitic steels irradiated at low temperatures. J. Nucl. Mater. 258263, 1275 (1998).Google Scholar
Spatig, P., Schaublin, R., Gyger, S., and Victoria, M.: Evolution of the mechanical properties of the F82H ferritic/martensitic steel after 590 MeV proton irradiation. J. Nucl. Mater. 258263, 1345 (1998).Google Scholar
Schaublin, R., Spatig, P., and Victoria, M.: Chemical segregation behavior of the low activation ferritic/martensitic steel F82H. J. Nucl. Mater. 258263, 1350 (1998).Google Scholar
Gelles, D.S., Rice, P.M., Zinkle, S.J., and Chung, H.M.: Microstructural examination of irradiated V–(4–5%)Cr–(4–5%)Ti. J. Nucl. Mater. 258263, 1380 (1998).Google Scholar
Rice, P.M. and Zinkle, S.J.: Temperature dependence of the radiation damage microstructure in V–4Cr–4Ti neutron irradiated to low dose. J. Nucl. Mater. 258263, 1414 (1998).Google Scholar
Gazda, J., Meshii, M., and Chung, H.M.: Microstructure of V–4Cr–4Ti alloy after low-temperature irradiation by ions and neutrons. J. Nucl. Mater. 258263, 1437 (1998).CrossRefGoogle Scholar
van Osch, E.V. and De Vries, M.I.: Irradiation hardening of V–4Cr–4Ti. J. Nucl. Mater. 271272, 162 (1999).Google Scholar
Candra, Y., Fukumoto, K., Kimura, A., and Matsui, H.: Microstructural evolution and hardening of neutron irradiated vanadium alloys at low temperatures in Japan Material Testing Reactor. J. Nucl. Mater. 271272, 301 (1999).Google Scholar
Xu, D.H., Wirth, B.D., Li, M.M., and Kirk, M.A.: Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals. Acta Mater. 60, 4286 (2012).Google Scholar
Xu, D. and Wirth, B.D.: Spatially dependent rate theory modeling of thermal desorption spectrometry of helium-implanted iron. Fusion Sci. Technol. 56, 1064 (2009).Google Scholar
Xu, D. and Wirth, B.D.: Modeling spatially dependent kinetics of helium desorption in BCC iron following He ion implantation. J. Nucl. Mater. 403, 184 (2010).Google Scholar
Xu, D., Hu, X., and Wirth, B.D.: A phase-cut method for multi-species kinetics: Sample application to nanoscale defect cluster evolution in alpha iron following helium ion implantation. Appl. Phys. Lett. 102, 011904 (2013).Google Scholar
Hu, X., Xu, D., Byun, T.S., and Wirth, B.D.: Modeling of irradiation hardening of iron after low-dose and low-temperature neutron irradiation. Model. Simul. Sci. Eng. 22, 0655002 (2014).Google Scholar
Xu, D., Wirth, B.D., Li, M., and Kirk, M.A.: Defect microstructural evolution in ion irradiated metallic nanofoils: Kinetic Monte Carlo simulation versus cluster dynamics modeling and in situ transmission electron microscopy experiments. Appl. Phys. Lett. 101, 101905 (2012).CrossRefGoogle Scholar
Xu, D., Wirth, B.D., Li, M., and Kirk, M.A.: Recent work towards understanding defect evolution in thin molybdenum foils through in situ ion irradiation under TEM and coordinated cluster dynamics modeling. Curr. Opin. Solid State Mater. Sci. 16, 109 (2012).Google Scholar
Li, M., Kirk, M.A., Baldo, P.M., Xu, D., and Wirth, B.D.: Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling. Philos. Mag. 92(16), 2048 (2012).CrossRefGoogle Scholar
Becquart, C.S. and Wirth, B.D.: Kinetic Monte Carlo simulations of irradiation effects. In Comprehensive Nuclear Materials, Elsevier, 2012, Chapter 1.14.Google Scholar
Kohnert, A.A. and Wirth, B.D.: Phys. Rev. B (2014, submitted).Google Scholar
Kohnert, A.A.: The kinetics of dislocation loop formation in ferritic alloys through the aggregation of irradiation induced defects. Ph.D. Thesis, University of California, Berkeley, 2014.Google Scholar
Ortiz, C.J. and Caturla, M.J.: Simulation of defect evolution in irradiated materials: Role of intracascade clustering and correlated recombination. Phys. Rev. B 75, 184101 (2007).Google Scholar
Ortiz, C.J., Pichler, P., Fuhner, T., Cristiano, F., Colombeau, B., Cowern, N.E.B., and Claverie, A.: A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion implanted silicon. J. Appl. Phys. 96, 4866 (2004).Google Scholar
Smoluchowski, M.V.: A mathematical theory of coagulation kinetics of colloidal solutions. Z. Phys. Chem. 92, 192 (1917).Google Scholar
Waite, T.R.: Theoretical treatment of the kinetics of diffusion-limited reactions. Phys. Rev. B 107, 463 (1957).Google Scholar
Heinisch, H.L., Singh, B.N., and Golubov, S.I.: The effects of one-dimensional glide on the reaction kinetics of interstitial clusters. J. Nucl. Mater. 283, 737 (2000).Google Scholar
Heinisch, H.L., Trinkaus, H., and Singh, B.N.: Kinetic Monte Carlo studies of the reaction kinetics of crystal defects that diffuse one-dimensionally with occasional transverse migration. J. Nucl. Mater. 367370, 332 (2007).CrossRefGoogle Scholar
Erhart, P. and Marian, J.: Calculation of the substitutional fraction of ion-implanted He in an α-Fe target. J. Nucl. Mater. 414, 426 (2011).Google Scholar
Stoller, R.E., Golubov, S.I., Domain, C., and Becquart, C.S.: Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models. J. Nucl. Mater. 382, 77 (2008).Google Scholar
Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping and Range of Ions in Matter (Pergamon, New York, 1984).Google Scholar
Derlet, P.M., Nguyen-Manh, D., and Dudarev, S.L.: Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys. Rev. B 76, 054107 (2007).CrossRefGoogle Scholar
Bortz, A.B., Kalos, M.H., and Lebowitz, J.L.: New algorithm for Monte-Carlo simulations of Ising spin systems. J. Comp. Phys. 17, 10 (1975).Google Scholar
Woo, C.H. and Singh, B.N.: Production bias due to clustering of point defects in irradiation-induced cascades. Philos. Mag. A 65, 889 (1992).CrossRefGoogle Scholar
Arakawa, K., Ono, K., Isshiki, M., Mimura, K., Uchikoshi, M., and Mori, H.: Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956 (2007).Google Scholar
Cottrell, A.H.: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. 62, 49 (1949).Google Scholar
Eldrup, M., Singh, B.N., Zinkle, S.J., Byun, T.S., and Farrell, K.: Dose dependence of defect accumulation in neutron irradiated copper and iron. J. Nucl. Mater. 307311, 912 (2002).CrossRefGoogle Scholar
Zinkle, S.J. and Singh, B.N.: Microstructure of neutron-irradiated iron before and after tensile deformation. J. Nucl. Mater. 351, 269 (2006).CrossRefGoogle Scholar
Hernandez-Mayoral, M., Yao, Z., Jenkins, M.L., and Kirk, M.A.: Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88, 2881 (2008).Google Scholar
Yao, Z., Hernandez-Mayoral, M., Jenkins, M., and Kirk, M.A.: Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: Damage evolution in thin-foils at lower doses. Philos. Mag. 88, 2851 (2008).Google Scholar
Yao, Z., Jenkins, M., Hernandez-Mayoral, M., and Kirk, M.A.: The temperature dependence of heavy-ion damage in iron: A microstructural transition at elevated temperatures. Philos. Mag. 90, 4623 (2010).Google Scholar
Topbasi, C., Motta, A.T., and Kirk, M.A.: In situ study of heavy ion induced radiation damage in NF616 (P92) alloy. J. Nucl. Mater. 425, 48 (2012).Google Scholar
Kaoumi, D., Adamson, J., and Kirk, M.: Microstructure evolution of two model ferritic/martensitic steels under in situ ion irradiation at low doses (0–2 dpa). J. Nucl. Mater. 445, 12 (2014).Google Scholar
Kirk, M.A., Baldo, P.M., Liu, A.C., Ryan, E.A., Birtcher, R.C., Yao, Z., Xu, S., Jenkins, M.L., Hernandez-Mayoral, M., Kaoumi, D., and Motta, A.T.: In situ transmission electron microscopy and ion irradiation of ferritic materials. Microsc. Res. Tech. 72, 82 (2009).Google Scholar
Jenkins, M., Yao, Z., Hernndez-Mayoral, M., and Kirk, M.: Damage development in FeCr alloys under heavy-ion irradiation by IVEM. J. Nucl. Mater. 389, 197 (2009).CrossRefGoogle Scholar
Jenkins, M.L., English, C.A., and Eyre, B.L.: Heavy-ion irradiation of alpha-iron. Philos. Mag. A 38, 97 (1978).Google Scholar
Topbasi, C.: Microstructural evolution of ferritic-martensitic steels under heavy ion irradiation. Ph.D. Thesis, Pennsylvania State University, 2014.Google Scholar
Satoh, Y. and Matsui, H.: Obstacles for one-dimensional migration of interstitial clusters in iron. Philos. Mag. 89, 1489 (2009).Google Scholar
Hamaoka, T., Satoh, Y., and Matsui, H.: One-dimensional motion of interstitial clusters in iron-based binary alloys observed using a high-voltage electron microscope. J. Nucl. Mater. 433, 180 (2013).Google Scholar
Arakawa, K., Mori, H., and Ono, K.: Formation process of dislocation loops in iron under irradiations with low-energy helium, hydrogen ions or high-energy electrons. J. Nucl. Mater. 307311, 272 (2002).Google Scholar
Fu, C.C., Torre, J.D., Willaime, F., Bocquet, J.L., and Barbu, A.: Multiscale modeling of defect kinetics in irradiated iron. Nat. Mater. 4, 68 (2005).Google Scholar
Fu, C.C., Willaime, F., and Ordejon, P.: Stability and mobility of mono- and di-interstitials in alpha-Fe. Phys. Rev. Lett. 92, 175503 (2004).Google Scholar
Barashev, A.V., Golubov, S.I., Osetsky, Y.N., and Stoller, R.E.: Reaction kinetics of non-localised particle–trap complexes. Philos. Mag. 90, 897 (2010).Google Scholar