Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:20:44.876Z Has data issue: false hasContentIssue false

Microwires coated by glass: A new family of soft and hard magnetic materials

Published online by Cambridge University Press:  31 January 2011

A. Zhukov
Affiliation:
Donostia International Physics Center, P.M. de Lardizabal, 4, 20018, San Sebastiá;n, Spain, and TAMag S.L., c/Jose Abascal 53, Madrid, Spain
J. González
Affiliation:
Departamento de Física de Materiales, Facultad de Ciencias Químicas, P.O. Box 1072, 20080 San Sebastián, Spain
J. M. Blanco
Affiliation:
Departamento de Física Aplicada I, Escuela Universitaria de Ingeniería Técnica Industrial, 20011 San Sebastián, Spain
M. Vázquez
Affiliation:
Instituto de Magnestismo Aplicado, Red Nacional de Ferrocarriles Españolas-Universidad Complutense de Madrid (RENFE-UCM), and Instituto de Ciencia de Materiales, Consejo Superor de Investigaciones Cientificas (CSIC), P.O. Box 155, 28230 Las Rozas, Madrid, Spain
V. Larin
Affiliation:
AmoTec, Kishinev, B-d Dacia 15 ap. 78, Moldova
Get access

Abstract

The Taylor–Ulitovski technique was employed for fabrication of tiny ferromagnetic amorphous and nanocrystalline metallic wires covered by an insulating glass coating with magnetic properties of great technological interest. A single and large Barkhausen jump was observed for microwires with positive magnetostriction. Negative magnetostriction microwires exhibited almost unhysteretic behavior with an easy axis transverse to the wire axis. Enhanced magnetic softness (initial permeability, μι, up to 14000) and giant magneto impedance (GMI) effect (up to 140% at 10 MHz) was observed in amorphous CoMnSiB microwires with nearly zero magnetostriction after adequate heat treatment. Large sensitivity of GMI and magnetic characteristics on external tensile stresses was observed. Upon heat treatment, FeSiBCuNb amorphous microwires devitrificated into a nanocrystalline structure with enhanced magnetic softness. The magnetic bistability was observed even after the second crystallization process (increase of switching field by more than 2 orders of magnitude up to 5.5 kA/m). Hard magnetic materials were obtained as a result of decomposition of metastable phases in Co–Ni–Cu and Fe–Ni–Cu microwires fabricated by Taylor–Ulitovski technique when the coercivity increased up to 60 kA/m. A magnetic sensor based on the magnetic bistability was designed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Humphrey, F.B., Mohri, K., Yamasaki, J., Kawamura, H., Malmhäll, R., and Ogasawara, I., in Magnetic Properties of Amorphous Metals, edited by Hernando, A., Madurga, V., Sanzhez-Trujillo, M.C., and Vázquez, M. (Elsevier, Amsterdam, The Netherlands, 1987), p. 110.Google Scholar
2. Vázquez, M. and Chen, D-X., IEEE Trans. Magn. Mag-31, 1229 (1995).CrossRefGoogle Scholar
3. Squire, P.T., Atkinson, D., Atalay, S., IEEE Trans. Magn. Mag-31, 1239 (1995).Google Scholar
4. Panina, L.V. and Mohri, K., Appl. Phys. Lett. 65, 1189 (1994).CrossRefGoogle Scholar
5. Beach, R.S. and Berkowitz, A.E., J. Appl. Phys. 76, 6209 (1994).CrossRefGoogle Scholar
6. Ulitovski, A.V., Method of continuous fabrication of microwires coated by glass, Authors certification USSR Patent. No. 128427 (3.9.1950).Google Scholar
7. Badinter, E.Ia., Berman, N.R., Drabenco, I.F., Zaborovski, V.I., Zelikovski, Z.I., and Cheban, V.G., Cast microwire and its properties (Shtinitsa, Kishinev, Moldova, 1973), pp. 6196.Google Scholar
8. Nixdorf, J., Draht-Welt 53, 696 (1967).Google Scholar
9. Goto, T., Trans. Jpn. Inst. Med. 21, 219 (1980).Google Scholar
10. Kraus, L., Schneider, J., and Wiesner, H., Czech. J. Phys. B26, 601 (1976).CrossRefGoogle Scholar
11. Baranov, S.A., Berzhanski, V.N., Zotov, S.K., Kokoz, V.L., Larin, V.S., and Torcunov, A.V., Phys. Met. Metall. 67, 73 (1989).Google Scholar
12. Vázquez, M. and Zhukov, A., J. Magn. Magn. Mater. 160, 223 (1996).CrossRefGoogle Scholar
13. Chiriac, H. and Ovari, T.A., in Progress in Material Science (Elsevier, London, United Kingdom, 1997). 40, 333 (1997).Google Scholar
14. Velázquez, J., Vázquez, M., and Zhukov, A., J. Mater. Res. 11, 2499 (1996).Google Scholar
15. Arcas, J., Gómez-Polo, C., Zhukov, A., Vázquez, M., Larin, V., and Hernando, A., Nanostruct. Mater. 7, 823 (1996).CrossRefGoogle Scholar
16. Vázquez, M., Zhukov, A., Aragoneses, P., Arcas, J., Marin, P., and Hernando, A., IEEE Trans. Magn. 34, 724 (1998).Google Scholar
17. Sinnecker, E.H.C.P, Sinnecer, J.P., Zhukov, A., Garcia-Beneytez, J.M., Garcia Prieto, M.J., and Vázquez, M., J. Phys. IV 8, Pr. 2, 225 (1998).Google Scholar
18. Wang, K-Y., Arcas, J., Larin, V., Muñoz, J.L., Zhukov, A.P., Chen, D-X., Vázquez, M., and Hernando, A., Phys. Status Solids 162, R5 (1997).3.0.CO;2-3>CrossRefGoogle Scholar
19. Taylor, G.F., Phys. Rev. 24, 655 (1924).CrossRefGoogle Scholar
20. González, J., Blanco, J.M., Vázquez, M., Barandiarán, J.M., Rivero, G., and Hernando, A., J. Appl. Phys. 70, 6522 (1991).CrossRefGoogle Scholar
21. Zhukov, A., Vázquez, M., Velázquez, J., Chiriac, H., and Larin, V., J. Magn. Magn. Mater. 151, 132 (1995).CrossRefGoogle Scholar
22. González, J., J. Magn. Magn. Mater. 87, 111 (1990).Google Scholar
23. Barandiaran, J.M., Hernando, A., Madurga, V., Nielsen, O.V., Vázquez, M., and Vázquez-López, M., Phys. Rev. 35, 5066 (1987).CrossRefGoogle Scholar
24. Gonzalez, J., Kulakowski, K., Aragoneses, P., Blanco, J.M., and Iruriet, E., J. Mater. Sci. 30, 5173 (1995).CrossRefGoogle Scholar
25. Aragoneses, P., Zhukov, A., Gonzalez, J., Blanco, J.M., and Dominquez, L., Sens. Actuators, 81, 86 (2000).CrossRefGoogle Scholar
26. Sinnecker, E.H.C.P, Páramo, D., Larin, V., Zhukov, A., Vázquez, M., Hernando, A., and Gonzalez, J., J. Magn. Magn. Mater. 203, 54 (1999).Google Scholar
27. Larin, V., Torcunov, A., Baranov, S., Vázquez, M., Zhukov, A., and Hernando, A., Method of magnetic codification and marking of the objects, Spain Patent. No. P 96011993 (1996).Google Scholar