Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T05:24:53.626Z Has data issue: false hasContentIssue false

Microwave dielectric properties of (1 − x)Cu3Nb2O8−xZn3Nb2O8 ceramics

Published online by Cambridge University Press:  31 January 2011

Dong-Wan Kim
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul, Korea
In-Tae Kim
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul, Korea
Byungwoo Park
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul, Korea
Kug Sun Hong*
Affiliation:
School of Materials Science & Engineering, College of Engineering, Seoul National University, Seoul, Korea
Jong-Hee Kim
Affiliation:
Materials Research Lab., Samsung Electro-Mechanics Co., Ltd., Suwon, Korea
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

The sintering behavior and microwave dielectric properties of (1 − x)Cu3Nb2O8xZn3Nb2O8 have been investigated using dilatometry, x-ray diffraction, and a network analyzer. It was found that (1 − x)Cu3Nb2O8−xZn3Nb2O8 ceramics have a much lower melting temperature than Zn3Nb2O8 ceramics without Cu3Nb2O8 additives. Samples sintered at 900 °C for 2 h exhibited densities >97% of the theoretical density. Cu3Nb2O8 acts as a sintering aid. Two phase regions were identified with increasing Zn3Nb2O8 contents. A Cu3Nb2O8−Zn3Nb2O8 solid solution exists from 0 < x < 0.5 while a mixture of Cu3Nb2O8 and Zn3Nb2O8 exists from 0.5 < x < 1. The microwave dielectric properties correlated to the crystal structure. In Cu3Nb2O8−Zn3Nb2O8 solid solution region, the variation of dielectric properties could be explained by the structure distortion of Cu3Nb2O8 due to electronic anisotropies of Cu2+ cations.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Langbein, H. and Wolki, G., Thermochimica Acta 264, 67 (1995).CrossRefGoogle Scholar
2.Wahlstrom, E. and Marinder, B.O., Inorg. Nucl. Chem. Lett. 13, 559 (1977).Google Scholar
3.Isobe, M., Marumo, F., Iwai, S., and Kondo, Y., Bull. Tokyo Inst. Tech. 120, 1 (1974).Google Scholar
4.Brusset, H., Mahe, R., and Kyi, U.A., Mater. Res. Bull. 7, 1061 (1972).CrossRefGoogle Scholar
5.Yamaguchi, O., Maruyama, N., and Hirota, K., J. Mater. Sci. Lett. 10, 445 (1991).CrossRefGoogle Scholar
6.Drew, M.G.B., Hobson, R.J., and Padayatchy, V.T., J. Mater. Chem. 5, 1779 (1995).CrossRefGoogle Scholar
7.Takada, T., Wang, S.F., Yoshikawa, S., Jang, S.J., and Newnham, R.E., J. Am. Ceram. Soc. 77, 1909 (1994).CrossRefGoogle Scholar
8.Lee, C.C. and Lin, P., Jpn. J. Appl. Phys. 37, 6048 (1998).CrossRefGoogle Scholar
9.Yang, C.F., Jpn. J. Appl. Phys. 38, 3576 (1999).CrossRefGoogle Scholar
10.Hay, D., CELSIZ, package for unit cell refinement of powder X-ray data, CSIRO Division of Materials Science and Technology, Clayton, Australia.Google Scholar
11.Kaifez, D. and Guillion, P., Dielectric Resonators; (Artech House, Norwood, MA, 1986), pp. 327376.Google Scholar
12.Hakki, B.W. and Coleman, P.D., IRE Tans. Microwave Theory & Technol. 8, 402 (1960).CrossRefGoogle Scholar
13.Nishikawa, T., Wakino, K., Tamura, H., Tanaka, H., and Ishikawa, Y., IEEE MTT-S Digest 3, 277 (1987).Google Scholar
14.Tummala, R.R., J. Am. Ceram. Soc. 74, 895 (1991).CrossRefGoogle Scholar
15.Knickerbocker, S.H., Kumar, A.H., and Herron, L.W., Am. Ceram. Soc. Bull. 72, 90 (1993).Google Scholar
16.Singer, G.M. and Tomozawa, M., Phys. Chem. Glasses 30 (3), 102 (1989).Google Scholar
17.Chang, C.R. and Jean, J.H., J. Am. Ceram. Soc. 82, 1725 (1999).CrossRefGoogle Scholar
18.Dayal, R.R., J. Less-Common Met. 26, 381 (1972).CrossRefGoogle Scholar
19.Brown, I.D. and Shannon, R.D., Acta. Cryst. A29, 266 (1973).CrossRefGoogle Scholar
20.Brown, I.D., Acta. Cryst. B48, 553 (1992).CrossRefGoogle Scholar
21.Bosman, A.J. and Havinga, E.E., Phys. Rev. 129, 1593 (1960).CrossRefGoogle Scholar
22.Shannon, R.D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
23.Lee, H.J., Hong, K.S., Kim, S.J., and Kim, I.T., Mater. Res. Bull. 32, 847 (1997).CrossRefGoogle Scholar
24.Wakino, K. and Tamura, H., Ceram. Trans. 8, 305 (1990).Google Scholar
25.Lee, H.J., Hong, K.S., and Kim, I.T., J. Mater. Res. 12, 1437 (1997).CrossRefGoogle Scholar
26.Kim, D.W., Kim, D.Y., and Hong, K.S., J. Mater. Res. 15, 1331 (2000).CrossRefGoogle Scholar
27.Lee, H.J., Kim, I.T., and Hong, K.S., Jpn. J. Appl. Phys. 36, L1318 (1997).CrossRefGoogle Scholar