Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T22:12:51.405Z Has data issue: false hasContentIssue false

Microstructure of epitaxial VO2 thin films deposited on (1120) sapphire by MOCVD

Published online by Cambridge University Press:  03 March 2011

H. Zhang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
H.L.M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
J. Guo
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
T.J. Zhang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
Get access

Abstract

Epitaxial VO2 thin films grown on (1120) sapphire (α-Al2O3) substrates by MOCVD at 600 °C have been characterized by conventional electron microscopy and high resolution electron microscopy (HREM). Three different epitaxial relationships between the monoclinic VO2 films and sapphire substrates have been found at room temperature: I. (200) [010] monoclinic VO2 ‖ (1120) [0001] sapphire, II. (002) [010] monoclinic VO2 ‖ (1120) [0003] sapphire, and III. (020) [102] monoclinic VO2 ‖ (1120) [0001] sapphire. Expitaxial relationships II and III are equivalent to each other when the film possesses tetragonal structure at the deposition temperature; i.e., they can be described as (010) [100] tetragonal VO2 ‖ (1120) [0001] sapphire and (100) [010] tetragonal VO2 ‖ (1120) [0001] sapphire. HREM image shows that the initial nucleation of the film was dominated by the first orientation relationship, but the film then grew into the grains of the second and the third (equivalent to each other at the deposition temperature) epitaxial relationships. Successive 90°transformation rotational twins around the a-axis are commonly observed in the monoclinic films.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Goto, K. S., Solid State Chemistry and Its Applications to Sensors and Electronic Devices (Elsevier, New York, 1988).Google Scholar
2Ryabora, L. A., in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1981), Vol. 7, Chap. 5.Google Scholar
3Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).Google Scholar
4Wyckoff, R. W. G., Crystal Structures, 2nd ed. (John Wiley and Sons, New York, 1965), Vol. 1.Google Scholar
5Anderson, G., Acta Chem. Scand. 10, 623 (1956).CrossRefGoogle Scholar
6Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).CrossRefGoogle Scholar
7Goodenough, J. B., Phys. Rev. 117, 1442 (1960).CrossRefGoogle Scholar
8Adler, D. and Brooks, H., Phys. Rev. 155, 826 (1967).CrossRefGoogle Scholar
9Goodenough, J. B., J. Solid State Chem. 3, 490 (1971).Google Scholar
10Berglund, C. N. and Guggenheim, H. J., Phys. Rev. 185, 1022 (1969).CrossRefGoogle Scholar
11Chang, H. L. M., You, H., Guo, J., and Lam, D. J., Appl. Surf. Sci. 48/49, 12 (1991).CrossRefGoogle Scholar
12Chang, H. L. M., Gao, Y., Zhang, T. J., and Lam, D. J., Thin Solid Films 216, 4 (1992).CrossRefGoogle Scholar
13Yuo, H., Chang, H. L. M., Chiarello, R. P., and Lam, D. J., in Heteroepitaxy of Dissimilar Materials, edited by Farrow, R. F. C., Harbison, J. P., Peercy, P. S., and Zangwill, A. (Mater. Res. Soc. Symp. Proc. 221, Pittsburgh, PA, 1991), p. 181.Google Scholar
14Kim, H. K., You, H., Chiarello, R. P., Chang, H. L. M., Zhang, T. J., and Lam, D. J., Phys. Rev. B 47, 12900 (1993).CrossRefGoogle Scholar
15Chang, H. L. M., You, H., Gao, Y., Guo, J., Foster, C. M., Chiarello, R. P., Zhang, T. J., and Lam, D. J., J. Mater. Res. 7, 2495 (1992).CrossRefGoogle Scholar
16Mitsuishi, T., Jpn. J. Appl. Phys. 6, 1060 (1967).CrossRefGoogle Scholar
17Anderson, G., Acta Chem. Scand. 10, 623 (1956).CrossRefGoogle Scholar
18Westman, S., Acta Chem. Scand. 15, 217 (1961).CrossRefGoogle Scholar
19Chang, H. L. M., Gao, Y., Zhang, T. J., and Lam, D. J., Appl. Surf. Sci. 65/66, 220 (1993).Google Scholar
20Hyde, B. G. and Anderson, S., Inorganic Crystal Structures (John Wiley & Sons, New York, 1989).Google Scholar
21Guo, J., Ellis, D. E., and Lam, D. J., Phys. Rev. B 45, 13647 (1992).CrossRefGoogle Scholar
22Ellis, D. E., Guo, J., and Lam, D. J., J. Am. Ceram. Soc. (in press).Google Scholar
23Fillingham, P. J., J. Appl. Phys. 38, 4823 (1967).Google Scholar
24Hayashi, Y., Van Landuyt, J., and Amelinckx, S., Phys. Status Solidi 39, 189 (1970).CrossRefGoogle Scholar