Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T05:26:34.710Z Has data issue: false hasContentIssue false

Microstructure and phase stability of single crystal NiAl alloyed with Hf and Zr

Published online by Cambridge University Press:  31 January 2011

I. E. Locci
Affiliation:
Case Western Reserve University, Cleveland, Ohio 44106, and NASA Lewis Research Center, Cleveland, Ohio 44135
R.M. Dickerson
Affiliation:
NYMA, Inc., Cleveland, Ohio 44124
A. Garg
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135
R. D. Noebe
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135
J.D. Whittenberger
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135
M. V. Nathal
Affiliation:
NASA Lewis Research Center, Cleveland, Ohio 44135
R. Darolia
Affiliation:
General Electric Aircraft Engines, Cincinnati, Ohio 45215
Get access

Abstract

Six near stoichiometric, NiAl single-crystal alloys, with 0.05−1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Ni16X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (β′) was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barret, C. A., Oxidation of Metals 30, 361 (1988).Google Scholar
2.Doychak, J., Smialek, J.L., and Mitchell, T. E., Metall. Trans. A 20, 499 (1989).CrossRefGoogle Scholar
3.Vedula, K., Pathare, V., Aslandis, I., and Titran, R. H., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), pp. 411–421.Google Scholar
4.Whittenberger, J. D., Nathal, M. V., Raj, S. V., and Pathare, V. M., Mater. Lett. 11, 267 (1991).CrossRefGoogle Scholar
5.Whittenberger, J. D. and Noebe, R. D., Metall. Trans. (1995, in press).Google Scholar
6.Darolia, R., Lahrman, D. F., Field, R. D., Dobbs, J. R., Chang, K. M., Goldman, E.H., and Konitzer, D.G., in Ordered Intermetallics–Physical Metallurgy and Mechanical Behavior, edited by Liu, C. T., Cahn, R. W., and Sauthoff, G. (Kluwer Academic Publishers, The Netherlands, 1992), pp. 679698.CrossRefGoogle Scholar
7.Darolia, R., J. Metals 43 (3), 44 (1991).Google Scholar
8.Darolia, R., in Structural Intermetallics, edited by Darolia, R., Lewansdowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., and Nathal, M. V. (The Minerals, Metals / Materials Society, Pennington, NJ, 1993), pp. 495504.Google Scholar
9.Reviere, R. D., Oliver, B. F., and Bruns, D. D., Materials / Manufacturing Processes 4 (1), 103 (1989).CrossRefGoogle Scholar
10.Goldman, E. H., in High Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whitteneberger, J. D., and Yoo, M. H., (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), p. 83.Google Scholar
11.Oti, J. A. and Yu, K. O., in Structural Intermetallics, edited by Darolia, R., Lewansdowski, J.J., Liu, C. T., Martin, P.L., Miracle, D. B., and Nathal, M. V. (The Minerals, Metals / Materials Society, Pennington, NJ, 1993), pp. 505511.Google Scholar
12.Yu, K. O., Oti, J. A., and Walston, W. S., J. Metals 45 (5), 49 (1993).Google Scholar
13.Locci, I. E. and Noebe, R. D., in Proceedings of the 47th Annual Meeting of the Electron Microscopy Society of America (San Francisco Press, Inc., 1989), pp. 308309.Google Scholar
14.Locci, I. E., Noebe, R. D., Bowman, R. R., Miner, R. V., Nathal, M. V., and Darolia, R., in High-Temperature Ordered Intermetal-lic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J.O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), pp. 10131018.Google Scholar
15.Locci, I. E., Dickerson, R., Bowman, R. R., Whittenberger, J. D., Nathal, M. V., and Darolia, R., in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J.D., and Yoo, M. H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA 1993), pp. 685690.Google Scholar
16.Walston, S. W. and Darolia, R., , in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J.D., and Yoo, M. H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA 1993), pp. 237–242.Google Scholar
17.Nash, P. and Pan, Y. Y., J. Phase Equilibria 12 (1), 105 (1991).CrossRefGoogle Scholar
18.Lee, K. J. and Nash, P., Phase, J.Equilibria 12 (1), 94 (1991).Google Scholar
19.Takeyama, M., Liu, C. T., and Sparks, C. J. Jr,, in Proc. Int. Symp. on Intermetallics Compounds (JIMIS-6), Sendai, Japan, edited by Izumi, Osamu (1991), pp. 871875.Google Scholar
20.Nash, P., in High-temperature Ordered Intermetallic Alloys, edited by Koch, C.C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), pp. 423427.Google Scholar
21. Unpublished results, NASA-Lewis Research Center and GEAE.Google Scholar
22.Gladyshevskii, E. I., Kripyakevich, P.I., Kuz'ma, Yu.B., and Teslyuk, M. Yu., Kristallografiya 6 (5), 769 (1961).Google Scholar
23.Spiegel, F. X., Bardos, D., and Beck, P.A., Trans. Metall. Soc., AIME, 227, 575 (1963).Google Scholar
24.Garg, A., Noebe, R.D., and Darolia, R., Acta Mater. 44 (7), 2809 (1996).CrossRefGoogle Scholar
25.Pearsons Handbook of Crystallographic Data for Intermetallic Phases, edited by Villars, P. and Calvert, L.D., 2nd ed. (ASM INTERNATIONAL, Materials Park, OH), Vol. 3, p. 3895.Google Scholar
26.Pearsons Handbook of Crystallographic Data for Intermetallic Phases, edited by Villars, P. and Calvert, L.D., 2nd ed. (ASM INTERNATIONAL, Materials Park, OH), Vol. 4, p. 4692.Google Scholar
27.Locci, I. E., Whittenberger, J.D., Dickerson, R.M., Noebe, R. D., Nathal, M. V., and Darolia, R., “High Temperature Mechanical Properties of NiAl Single Crystals with additions of Hf and Zr” (unpublished).Google Scholar
28.Garg, A., Noebe, R.D., and Darolia, R., NASA Conference Publication 10178, 1995, paper 28.Google Scholar
29.Gladyshevskii, E. I., Markiv, V.Y., and Kuzma, Y.B., Dopov. Akad. Nauk. Ukr. RSR 4, 481 (1962).Google Scholar
30.Gladyshevskii, E. I. and Borusevich, L.K., Russ. J. Inorg. Chem. 8 (8), 997 (1963).Google Scholar