Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:30:42.125Z Has data issue: false hasContentIssue false

Microcompression tests of single-crystalline and ultrafine grain Bi2Te3 thermoelectric material

Published online by Cambridge University Press:  26 June 2015

Jon Ander Santamaría*
Affiliation:
CEIT and TECNUN, Universidad de Navarra M. de Lardizabal, 20018 San Sebastián, Spain
Jon Alkorta
Affiliation:
CEIT and TECNUN, Universidad de Navarra M. de Lardizabal, 20018 San Sebastián, Spain
Javier Gil Sevillano
Affiliation:
CEIT and TECNUN, Universidad de Navarra M. de Lardizabal, 20018 San Sebastián, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Highly textured, ultrafine grain pure Bi2Te3 has been obtained by applying large-strain high-pressure torsion (HPT) to hot-pressed (HP) coarse grain material. Its thermal conductivity is significantly smaller than the conductivity of HP Bi2Te3, and its crystallographic texture and mechanical properties significantly improved. The mechanical properties of both, coarse grain and ultrafine grain, samples have been assessed by compression tests of 2 µm diameter micropillars machined by focused ion beam. The micropillars built from coarse grain samples are single crystalline, those built from ultrafine grain materials are an order of magnitude larger than their grain size. The test results put in evidence the elastic and plastic anisotropy of Bi2Te3 and the significant strengthening and toughening effect of ultrafine grain refining. For instance, after an equivalent strain of about 100, the Vickers hardness (in kg mm−2) increases from 60 to 120. Simultaneously, about a 40% reduction of the thermal conductivity has been measured, and a very strong basal texture is developed normal to the torsion axis. Such combination of properties looks very promising for simultaneously enhancing the thermoelectric figure of merit and the mechanical reliability of Bi2Te3-based alloys through HPT processing.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Riffat, S.B. and Ma, X.: Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 23(8), 913 (2003).Google Scholar
Rowe, D.M.: Thermoelectrics Handbook: Macro to Nano (CRC Press, London, New York, Tokyo, 2006); pp. 15.Google Scholar
Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., and Chen, G.: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009).Google Scholar
Kim, D.H. and Mitani, T.: Thermoelectric properties of fine-grained Bi2Te3 alloys. J. Alloys Compd. 399, 14 (2005).Google Scholar
Zhang, Z., Sharma, P.A., Lavernia, E.J., and Yang, N.: Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering. J. Mater. Res. 26(3), 475 (2011).Google Scholar
Jenkins, J.O. and Rayne, J.A.: Elastic moduli of Bi2Te3 from 4.2 to 300 K. Phys. Lett. A 30(6), 349 (1969).Google Scholar
Rowe, D.M.: CRC Handbook of Thermoelectrics (CRC Press, London, New York, Washington, D.C., 1995).Google Scholar
Jeon, H.W., Ha, H.P., Hyun, D-B., and Shim, J.D.: Electrical and thermoelectrical properties of undoped Bi2Te3-Sb2Te3 and Bi2Te3-Sb2Te3-Sb2Se3 single crystals. J. Phys. Chem. Solids 52(4), 579 (1991).Google Scholar
Svechnikova, T.E., Shelimova, L.E., Konstantinov, P.P., Kretova, M.A., Avilov, E.S., Zemskov, V.S., Stiewe, C., and Zuber, A.: Thermoelectric properties. Inorg. Mater. 41(10), 10431049 (2005).CrossRefGoogle Scholar
Jiang, J., Chen, L., Bai, S., Yao, Q., and Wang, Q.: Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1−x crystals prepared via zone melting. J. Cryst. Growth 277, 258 (2005).Google Scholar
Kim, D.H., Kim, C., Je, K-C., Ha, G.H., and Kim, H.: Fabrication and thermoelectric properties of c-axis-aligned Bi0.5Sb1.5Te3 with a high magnetic field. Acta Mater. 59(12), 4957 (2011).Google Scholar
Valiev, R., Islamgaliev, R., and Alexandrov, I.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103 (2000).Google Scholar
Zhao, L.D., Zhang, B-P., Liu, W.S., Zhang, H.L., and Li, J-F.: Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 467, 91 (2009).Google Scholar
Hu, L.P., Liu, X.H., Xie, H.H., Shen, J.J., Zhu, T.J., and Zhao, X.B.: Improving thermoelectric properties of n-type bismuth–telluride-based alloys by deformation-induced lattice defects and texture enhancement. Acta Mater. 60(11), 4431 (2012).CrossRefGoogle Scholar
Zhao, L.D., Zhang, B-P., Li, J-F., Zhang, H.L., and Liu, W.S.: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10(5), 651 (2008).Google Scholar
Böttner, H., Ebling, D.G., Jacquot, A., König, J., Kirste, L., and Schmidt, J.: Structural and mechanical properties of spark plasma sintered n- and p-type bismuth telluride alloys. Phys. Status Solidi RRL 1(6), 235 (2007).Google Scholar
Uchic, M.D. and Dimiduk, D.M.: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng., A 400401, 268 (2005).Google Scholar
Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86(33–35), 5567 (2006).CrossRefGoogle Scholar
Kavei, G. and Karami, M.A.: Formation of anti-site defects and bismuth overstoichiometry in p-type Sb2−xBixTe3 thermoelectric crystals. Eur. Phys. J. Appl. Phys. 42, 67 (2008).Google Scholar
Mikmeková, Š., Matsuda, K., Watanabe, K., Ikeno, S., Müllerová, I., and Frank, L.: FIB induced damage examined with the low energy SEM. Mater. Trans. 52(3), 292 (2011).Google Scholar
Kiener, D., Motz, C., Rester, M., Jenko, M., and Dehm, G.: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng., A 459(1–2), 262 (2007).Google Scholar
Rubanov, S. and Munroe, P.R.: FIB-induced damage in silicon. J. Microsc. 214, 213 (2004).Google Scholar
Soler, R., Molina-Aldareguia, J.M., Segurado, J., Llorca, J., Merino, R.I., and Orera, V.M.: Micropillar compression of LiF [111] single crystals: Effect of size, ion irradiation and misorientation. Int. J. Plast. 36, 50 (2012).Google Scholar
Zhilyaev, A. and Langdon, T.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53(6), 893 (2008).Google Scholar
Kiener, D., Motz, C., and Dehm, G.: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505(1–2), 79 (2009).Google Scholar
Li, N., Mara, N.A., Wang, Y.Q., Nastasi, M., and Misra, A.: Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles. Scr. Mater 64(10), 974 (2011).Google Scholar
Lotfian, S., Molina-Aldareguia, J.M., Yazzie, K.E., Llorca, J., and Chawla, N.: High-temperature nanoindentation behavior of Al/SiC multilayers. Philos. Mag. Lett. 92(8), 362 (2012).Google Scholar
Uchic, M.D., Shade, P.A., and Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39(1), 361 (2009).Google Scholar
Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654 (2011).Google Scholar
Greer, J.R., Oliver, W.C., and Nix, W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6), 1821 (2005).Google Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1565 (1992).Google Scholar
Pavlova, L.M., Shtern, Y.I., and Mironov, R.E.: Thermal expansion of bismuth telluride. High Temp. 49(3), 369 (2011).Google Scholar
Landolt, H. Hans, Börnstein, R., Hellwege, K.H., Clasen, R., Schulz, M., Weiss, H., and Madelung, O.: Numerical Data and Functional Relationships in Science and Technology. Group 3, Crystal and Solid State Physics. Vol. 17, Semiconductors, Springer: Berlin, 1983.Google Scholar
Spear, K.E.: Diamond-ceramic coating of the future. J. Am. Ceram. Soc. 72(2), 171 (1989).CrossRefGoogle Scholar
Zühlke, T.: Thermomechanical and microstructural properties of ZnCuTi under different deformation conditions. Ph.D. Thesis, Tecnun. Universidad de Navarra, 2014.Google Scholar
Srinivasarao, B., Zhilyaev, A.P., Langdon, T.G., and Pérez-Prado, M.T.: On the relation between the microstructure and the mechanical behavior of pure Zn processed by high pressure torsion. Mater. Sci. Eng., A 562, 196 (2013).Google Scholar
Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).Google Scholar
Zhang, H., Schuster, B.E., Wei, Q., and Ramesh, K.T.: The design of accurate micro-compression experiments. Scr. Mater. 54(2), 181 (2006).CrossRefGoogle Scholar
Lilleodden, E.: Microcompression study of Mg (0 0 0 1) single crystal. Scr. Mater. 62(8), 532 (2010).Google Scholar
Kelley, E.W. and Hosford, W.F.: Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5 (1968).Google Scholar
Zhao, L-D., Zhang, B-P., Li, J-F., Zhou, M., Liu, W-S., and Liu, J.: Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 455(1–2), 259 (2008).Google Scholar
Kim, H. and Hong, S.: Compound prepared by high energy milling and hot extrusion. Curr. Nanosci. 10, 118 (2014).Google Scholar
Niihara, K., Morena, R., and Metals, O.: Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13, (1982).Google Scholar
Ni, J.E., Case, E.D., Khabir, K.N., Stewart, R.C., Wu, C-I., Hogan, T.P., Timm, E.J., Girard, S.N., and Kanatzidis, M.G.: Room temperature Young’s modulus, shear modulus, Poisson's ratio and hardness of PbTe–PbS thermoelectric materials. Mater. Sci. Eng., B 170(1–3), 58 (2010).Google Scholar
Eilertsen, J., Subramanian, M.A., and Kruzic, J.J.: Fracture toughness of Co4Sb12 and In0.1Co4Sb12 thermoelectric skutterudites evaluated by three methods. J. Alloys Compd. 552, 492 (2013).CrossRefGoogle Scholar
Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411425 (1998).Google Scholar
Alkorta, J., Martínez-Esnaola, J.M., and Gil Sevillano, J.: Detailed assessment of indentation size-effect in recrystallized and highly deformed niobium. Acta Mater. 54, 34453452 (2006).Google Scholar
Yang, L., Wu, J.S., and Zhang, L.T.: Synthesis of filled skutterudite compound La0.75Fe3CoSb12 by spark plasma sintering and effect of porosity on thermoelectric properties. J. Alloys Compd. 364(1–2), 83 (2004).Google Scholar
Julian Goldsmith, H.: Introduction to Thermoelectricity (Springer-Verlag, London, New York, 2010).Google Scholar
Xie, W., Wang, S., Zhu, S., He, J., Tang, X., Zhang, Q., and Tritt, T.M.: High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. J. Mater. Sci. 48(7), 2745 (2012).CrossRefGoogle Scholar
Schultz, J.M., McHugh, J.P., and Tiller, W.A.: Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J. Appl. Phys. 33(8), 2443 (1962).Google Scholar
Navrátil, J., Starý, Z., and Plechácek, T.: Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater. Res. Bull. 31(12), 1559 (1996).Google Scholar
Hu, L., Zhu, T., Liu, X., and Zhao, X.: Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 24, 5211 (2014).Google Scholar