Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T17:57:09.829Z Has data issue: false hasContentIssue false

Mechanism of vertical Ge nanowire nucleation on Si (111) during subeutectic annealing and growth

Published online by Cambridge University Press:  03 October 2011

Se Jun Park
Affiliation:
Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907
Sung Hwan Chung
Affiliation:
Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907
Bong-Joong Kim
Affiliation:
Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; and School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
Minghao Qi
Affiliation:
Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907
Xianfan Xu
Affiliation:
Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907
Eric A. Stach
Affiliation:
Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; and School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907
Chen Yang*
Affiliation:
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907; and Department of Physics, Purdue University, West Lafayette, Indiana 47907
*
c)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The direct integration of Ge nanowires with silicon is of interest in multiple applications. In this work, we describe the growth of high-quality, vertically oriented Ge nanowires on Si (111) substrates utilizing a completely sub-Au–Si-eutectic annealing and growth procedure. With all other conditions remaining identical, annealing below the Au–Si eutectic results in successful heteroepitaxial nucleation and growth of Ge nanowires on Si substrate while annealing above the Au–Si eutectic leads to randomly oriented growth. A model is presented to elucidate the effect of the annealing temperature, in which we hypothesized that sub-Au–Si-eutectic annealing leads to the formation of a single and well-oriented interface, essential to template heteroepitaxial nucleation. These results are critically dependent on substrate preparation and lead to the creation of integrated nanowire systems with a low thermal budget process.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Li, Y., Qian, F., Xiang, J., and Lieber, C.M.: Nanowire electronic and optoelectronic devices. Mater. Today 9, 18 (2006).CrossRefGoogle Scholar
2.Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., and Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).CrossRefGoogle ScholarPubMed
3.Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J-K., Goddard, W.A., and Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008).CrossRefGoogle ScholarPubMed
4.Peng, K-Q and Lee, S-T: Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 23, 198 (2011).CrossRefGoogle ScholarPubMed
5.Patolsky, F., Zheng, G., and Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78, 4260 (2006).CrossRefGoogle ScholarPubMed
6.Wang, D., Wang, Q., Javey, A., Tu, R., Dai, H., Kim, H., McIntyre, P.C., Krishnamohan, T., and Saraswat, K.C.: Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 83, 2432 (2003).CrossRefGoogle Scholar
7.Greytak, A.B., Lauhon, L.J., Gudiksen, M.S., and Lieber, C.M.: Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176 (2004).CrossRefGoogle Scholar
8.Kodambaka, S., Tersoff, J., Reuter, M.C., and Ross, F.M.: Germanium nanowire growth below the eutectic temperature. Science 316, 729 (2007).CrossRefGoogle ScholarPubMed
9.Adhikari, H., McIntyre, P.C., Marshall, A.F., and Chidsey, C.E.D.: Conditions for subeutectic growth of Ge nanowires by the vapor-liquid-solid mechanism. J. Appl. Phys. 102, 094311 (2007).CrossRefGoogle Scholar
10.Gamalski, A.D., Tersoff, J., Sharma, R., Ducatiand, C., and Hofmann, S.: Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Lett. 10, 2972 (2010).CrossRefGoogle ScholarPubMed
11.McIntyre, P.C., Adhikari, H., Goldthorpe, I.A., Hu, S., Leu, P.W., Marshall, A.F., and Chidsey, C.E.D.: Group IV semiconductor nanowire arrays: Epitaxy in different contexts. Semicond. Sci. Technol. 25, 024016 (2010).CrossRefGoogle Scholar
12.Kamins, T.I., Li, X., Willians, R.S., and Liu, X.: Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett. 4, 503 (2004).CrossRefGoogle Scholar
13.Dailey, J.W., Taraci, J., Clement, T., Smith, D.J., Drucker, J., and Picraux, S.T.: Vapor-liquid-solid growth of germanium nanostructures on silicon. J. Appl. Phys. 96, 7556 (2004).CrossRefGoogle Scholar
14.Jagannathan, H., Deal, M., Nishi, Y., Woodruff, J., Chidsey, C., and McIntyre, P.C.: Nature of germanium nanowire heteroepitaxy on silicon substrates. J. Appl. Phys. 100, 024318 (2006).CrossRefGoogle Scholar
15.Woodruff, J.H., Ratchford, J.B., Goldthorpe, I.A., McIntyre, P.C., and Chidsey, C.E.D.: Vertically oriented germanium nanowires grown from gold colloids on silicon substrates and subsequent gold removal. Nano Lett. 7, 1637 (2007).CrossRefGoogle ScholarPubMed
16.Manandhar, P., Akhadov, E.A., Tracy, C., and Picraux, S.T.: Integration of nanowire devices in out-of-plane geometry. Nano Lett. 10, 2126 (2010).CrossRefGoogle ScholarPubMed
17.Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K.: Ideal hydrogen termination of the Si (111) surface. Appl. Phys. Lett. 56, 656 (1990).CrossRefGoogle Scholar
18.Ferralis, N., Maboudian, R., and Carraro, C.: Temperature-Induced self-pinning and nanolayering of AuSi eutectic droplets. J. Am. Chem. Soc. 130, 2681 (2008).CrossRefGoogle ScholarPubMed
19.Krishnamachari, U., Borgstrom, M., Ohlsson, B.J., Panev, N., Samuelson, L., Seifert, W., Larsson, M.W., and Wallenberg, L.R.: Defect-free InP nanowires grown in [001] direction on InP (001). Appl. Phys. Lett. 85, 2077 (2004).CrossRefGoogle Scholar
20.Islam, M.S., Sharma, S., Kamins, T.I., and Williams, R.S.: Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces. Nanotechnology 15, L5 (2004).CrossRefGoogle Scholar
21.He, R., Gao, D., Fan, R., Hochbaum, A.I., Carraro, C., Maboudian, R., and Yang, P.: Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv. Mater. 17, 2098 (2005).CrossRefGoogle Scholar
Supplementary material: PDF

Park Supplementary Figure

Figure S1: SEM images of Ge nanowires grown on the SiO2 surface, with annealing at 320 °C (a) and 400 °C (b). SEM images were taken with a 25° inclination from the plan-view (in a, b and c) and in cross-sectional view (insets to a, b and c). All scale bars are 1 μm.

Download Park Supplementary Figure(PDF)
PDF 62.5 KB