Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T11:06:56.022Z Has data issue: false hasContentIssue false

Low-temperature growth of ZnO nanowires

Published online by Cambridge University Press:  31 January 2011

Yung-Kuan Tseng
Affiliation:
Department of Material Science and Engineering, National Tsing-Hua University, 101 Section 2 Kuang Fu Road, Hsinchu 300, Taiwan, Republic of China
I-Nan Lin
Affiliation:
Materials Science Center, National Tsing-Hua University, 101 Section 2 Kuang Fu Road, Hsinchu 300, Taiwan, Republic of China
Kuo-Shung Liu
Affiliation:
Department of Material Science and Engineering, National Tsing-Hua University, 101 Section 2 Kuang Fu Road, Hsinchu 300, Taiwan, Republic of China
Tzer-Shen Lin
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Bldg. 77, 195 Section 4 Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, Republic of China
I-Cherng Chen*
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Bldg. 77, 195 Section 4 Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

ZnO nanowires with diameters of 40–200 nm were grown with a gold catalyst in bulk quantities on alumina substrates and sapphire substrates. This synthesis procedure was achieved by heating a 1:1 mixture of ZnO and Zn powder to 500 °C with trace water vapor as an oxidizer. X-ray diffraction and transmission electron microscopy revealed that the nanowires were in the pure wurtzite phase. Photoluminescence spectroscopy showed two peaks: one was a strong ultraviolet emission at around 380 nm, which corresponds to the near-band-edge emission; the other was a weak near-infrared emission around 750 nm, which indicates a low concentration of oxygen vacancy. Moreover, we observed that the Zn/Au alloy droplets appeared on the tips of ZnO nanowires. As a consequence, we can select areas to grow ZnO nanowires by patterning the thin metal film on the substrates. These findings prove that the low-temperature growth mechanism is via vapor–liquid–solid rather than vapor transport deposition or vapor supersaturation (vapor–solid) mechanism. On the basis of the site-specific growth and the low-temperature requirement developed from this work, the synthesis of ZnO is compatible to microelectric machining system processing.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
2.Givargizov, E.I., J. Cryst. Growth 32, 20 (1975).CrossRefGoogle Scholar
3.Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).CrossRefGoogle Scholar
4.Lee, S.T., Wang, N., and Lee, C.S., Mater. Sci. Eng. A 286, 16 (2000).CrossRefGoogle Scholar
5.Chen, C.C. and Yeh, C.C., Adv. Mater. 12, 738 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
6.Zhu, J. and Fan, S., J. Mater. Res. 14, 1175 (1999).CrossRefGoogle Scholar
7.Yazawa, M., Koguchi, M., Muto, A., Ozawa, M., and Hiruma, K., Appl. Phys. Lett. 60, 2051 (1992).CrossRefGoogle Scholar
8.Duan, X.F. and Lieber, C.M., Adv. Mater. 279, 208 (2000).Google Scholar
9.Homma, Y., Finnie, P., Ogino, T., Noda, H., and Urisu, T., J. Appl. Phys. 86, 3083 (1999).CrossRefGoogle Scholar
10.Zhu, Y.Q., Hu, W.B., Hsu, W.K., Terrones, M., Grobert, N., Hare, J.P., Kroto, H.W., Walton, D.R.M., Terrones, H., J. Mater. Chem. 9, 3173 (1999).CrossRefGoogle Scholar
11.Bai, Z.G., Yu, D.P., Zhang, H.Z., Ding, Y., Gai, X.Z., Hang, Q.L., Xiong, G.C., Feng, S.Q., Chem. Phys. Lett. 303, 311 (1999).CrossRefGoogle Scholar
12.Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., Adv. Mater. 13, 113 (2000).3.0.CO;2-H>CrossRefGoogle Scholar
13.Pan, Z.W., Dai, Z.R., and , Z.L.Wang, 291, 1947 (2001).Google Scholar
14.Park, W.I., Kim, D.H., Jung, S-W., Yi, G-C., Appl. Phys. Lett. 80, 4232 (2002).CrossRefGoogle Scholar
15.Wu, J.J. and Liu, S.C., Adv. Mater. 14, 215 (2002).3.0.CO;2-J>CrossRefGoogle Scholar
16.Li, J.Y., Chen, X.L., Li, H., He, M., and Qiao, Z.Y., J. Cryst. Growth 233, 5 (2001).CrossRefGoogle Scholar
17.Wu, J. and Liu, S., Adv. Mater. 14, 215 (2002).3.0.CO;2-J>CrossRefGoogle Scholar
18.Lyu, S.C., Zhang, Y., Ruh, H., Lee, H-J., Shim, H-W., Suh, E-K., Lee, C.J., Chem. Phys. Lett. 363, 134 (2002).CrossRefGoogle Scholar
19.Yumoto, H., Sako, T., Gotoh, Y., Nishiyama, K., and Kaneko, T., J. Cryst. Growth 203, 136 (1999).CrossRefGoogle Scholar
20.Valcarcel, V., Souto, A., and Guitian, F., Adv. Mater. 10, 138 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
21.Anthrop, D.F. and Searcy, A.W., J. Phys. Chem. 68, 2335 (1964).CrossRefGoogle Scholar
22.Matsumoto, K., Hayashi, T., Honjo, M., and Shimaoka, G., Appl. Surf. Sci. 33/34, 342 (1988).CrossRefGoogle Scholar
23.Ashrafi, A.B.M.A., Suemune, I., and Collins, T.C., Jpn. J. Appl. Phys. 41, 2851 (2002).CrossRefGoogle Scholar
24.Kong, Y.C., Yu, D.P., Zhang, B., Fang, W., and Feng, S.Q., Appl. Phys. Lett. 78, 407 (2001).CrossRefGoogle Scholar
25.Li, J.Y., Chen, X.L., Li, H., He, M., and Qiao, Z.Y., J. Cryst. Growth 233, 5 (2001).CrossRefGoogle Scholar
26.JCPDS Card No. 36–1451.Google Scholar
27.Massalski, T.B., Murray, J.L., Bennett, L.H., and Baker, H., Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1990), p. 457.Google Scholar
28.Yao, B.D., Chan, Y.F., and Wang, N., Appl. Phys. Lett. 81, 757 (2002).CrossRefGoogle Scholar
29.Dai, Y., Zhang, Y., Li, Q.K., and Nan, C.W., Chem. Phys. Lett. 358, 83 (2002).CrossRefGoogle Scholar
30.Lyu, S.C., Zhang, Y., Ruh, H., Lee, H-J., Shim, H-W., Suh, E-K., Lee, C.J., Chem. Phys. Lett. 363, 134 (2002).CrossRefGoogle Scholar
31.Lin, B., Fu, Z., Jia, Y., and Liao, G., J. Electrochem. Soc. 148, G110 (2001).CrossRefGoogle Scholar