Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-30T10:31:14.126Z Has data issue: false hasContentIssue false

Length-dependent performances of sodium deoxycholate-dispersed single-walled carbon nanotube thin-film transistors

Published online by Cambridge University Press:  15 October 2012

Rongmei Si
Affiliation:
School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
Hong Wang
Affiliation:
School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
Li Wei
Affiliation:
School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
Yuan Chen*
Affiliation:
School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
Zhenfeng Wang
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075
Jun Wei
Affiliation:
Singapore Institute of Manufacturing Technology, Singapore 638075
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The material characteristics of single-walled carbon nanotubes (SWCNTs) influence the performance of SWCNT thin-film transistors (TFTs). In this study, a density gradient ultracentrifugation method was used to sort surfactant (sodium deoxycholate)-dispersed SWCNTs by length. SWCNTs of 150 ± 33 nm and 500 ± 91 nm long were fabricated into TFTs. The results show that the performance of SWCNT-TFTs is tube length dependent. TFTs fabricated using 500-nm long tubes have maximum on/off ratio around 105 with the mobility at ∼0.15 cm2/(V s), which is much higher than that of TFTs using 150-nm long tubes. Shorter tubes need higher tube density to form semiconducting paths, leading to lower on/off ratio and high contact resistance. Surfactant-wrapped SWCNTs will bundle into ropes of different size when tube density is high. It is critical to control tube length as well as surfactant residue content to build high performance SWCNT-TFTs.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhou, X.J., Park, J.Y., Huang, S.M., Liu, J., and McEuen, P.L.: Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95(14), 146805 (2005).CrossRefGoogle ScholarPubMed
Dai, H.J., Javey, A., Pop, E., Mann, D., Kim, W., and Lu, Y.R.: Electrical transport properties and field effect transistors of carbon nanotubes. Nano 1(1), 1 (2006).CrossRefGoogle Scholar
Banerjee, S., Hemraj-Benny, T., and Wong, S.S.: Routes towards separating metallic and semiconducting nanotubes. J. Nanosci. Nanotechnol. 5(6), 841 (2005).CrossRefGoogle ScholarPubMed
Hersam, M.C.: Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3(7), 387 (2008).CrossRefGoogle ScholarPubMed
Liu, J. and Hersam, M.C.: Recent developments in carbon nanotube sorting and selective growth. MRS Bull. 35(4), 315 (2010).CrossRefGoogle Scholar
Yang, S.B., Kong, B.S., Jung, D.H., Baek, Y.K., Han, C.S., Oh, S.K., and Jung, H.T.: Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 3(4), 1361 (2011).CrossRefGoogle ScholarPubMed
7.Cao, Q. and Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 21(1), 29 (2009).CrossRefGoogle Scholar
Lay, M.D., Novak, J.P., and Snow, E.S.: Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes. Nano Lett. 4(4), 603 (2004).CrossRefGoogle Scholar
Asada, Y., Nihey, F., Ohmori, S., Shinohara, H., and Saito, T.: Diameter-dependent performance of single-walled carbon nanotube thin-film transistors. Adv. Mater. 23(40), 4631 (2011).CrossRefGoogle ScholarPubMed
Asada, Y., Miyata, Y., Ohno, Y., Kitaura, R., Sugai, T., Mizutani, T., and Shinohara, H.: High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv. Mater. 22(24), 2698 (2010).CrossRefGoogle ScholarPubMed
Lee, C.W., Weng, C.H., Wei, L., Chen, Y., Chan-Park, M.B., Tsai, C.H., Leou, K.C., Poa, C.H.P., Wang, J.L., and Li, L.J.: Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles. J. Phys. Chem. C 112(32), 12089 (2008).CrossRefGoogle Scholar
Snow, E.S., Novak, J.P., Campbell, P.M., and Park, D.: Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82(13), 2145 (2003).CrossRefGoogle Scholar
Hu, L., Hecht, D.S., and Gruner, G.: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4(12), 2513 (2004).CrossRefGoogle Scholar
Ishida, M. and Nihey, F.: Estimating the yield and characteristics of random network carbon nanotube transistors. Appl. Phys. Lett. 92(16), 163507 (2008).CrossRefGoogle Scholar
Kocabas, C., Pimparkar, N., Yesilyurt, O., Kang, S.J., Alam, M.A., and Rogers, J.A.: Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 7(5), 1195 (2007).CrossRefGoogle ScholarPubMed
Pimparkar, N., Kocabas, C., Kang, S.J., Rogers, J., and Alam, M.A.: Limits of performance gain of aligned CNT over randomized network: Theoretical predictions and experimental validation. IEEE Electron Device Lett. 28(7), 593 (2007).CrossRefGoogle Scholar
Pimparkar, N., Guo, J., and Alam, M.A.: Performance assessment of subpercolating nanobundle network thin-film transistors by an analytical model. IEEE Trans. Electron Devices 54(4), 637 (2007).CrossRefGoogle Scholar
Kumar, S., Murthy, J.Y., and Alam, M.A.: Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 95(6), (2005).CrossRefGoogle ScholarPubMed
Miyata, Y., Shiozawa, K., Asada, Y., Ohno, Y., Kitaura, R., Mizutani, T., and Shinohara, H.: Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res. 4(10), 963 (2011).CrossRefGoogle Scholar
Pimparkar, N., Guo, J., and Alam, M.A.: Performance assessment of subpercolating nanobundle network thin-film transistors by an analytical model. IEEE Trans. Electron Devices 54(4), 637 (2007).CrossRefGoogle Scholar
Fagan, J.A., Simpson, J.R., Bauer, B.J., Lacerda, S.H.D., Becker, M.L., Chun, J., Migler, K.B., Walker, A.R.H., and Hobbie, E.K.: Length-dependent optical effects in single-wall carbon nanotubes. J. Am. Chem. Soc. 129(34), 10607 (2007).CrossRefGoogle ScholarPubMed
Huang, X.Y., McLean, R.S., and Zheng, M.: High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 77(19), 6225 (2005).CrossRefGoogle ScholarPubMed
Casey, J.P., Bachilo, S.M., Moran, C.H., and Weisman, R.B.: Chirality-resolved length analysis of single-walled carbon nanotube samples through shear-aligned photoluminescence anisotropy. ACS Nano 2(8), 1738 (2008).CrossRefGoogle ScholarPubMed
Chun, J., Fagan, J.A., Hobbie, E.K., and Bauer, B.J.: Size separation of single-wall carbon nanotubes by flow-field flow fractionation. Anal. Chem. 80(7), 2514 (2008).CrossRefGoogle ScholarPubMed
Fagan, J.A., Becker, M.L., Chun, J., and Hobbie, E.K.: Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 20(9), 1609 (2008).CrossRefGoogle Scholar
Fagan, J.A., Becker, M.L., Chun, J.H., Nie, P.T., Bauer, B.J., Simpson, J.R., Hight-Walker, A., and Hobbie, E.K.: Centrifugal length separation of carbon nanotubes. Langmuir 24(24), 13880 (2008).CrossRefGoogle ScholarPubMed
Hobbie, E.K., Fagan, J.A., Obrzut, J., and Hudson, S.D.: Microscale polymer-nanotube composites. ACS Appl. Mater. Interfaces 1(7), 1561 (2009).CrossRefGoogle ScholarPubMed
Asada, Y., Miyata, Y., Shiozawa, K., Ohno, Y., Kitaura, R., Mizutani, T., and Shinohara, H.: Thin-film transistors with length-sorted DNA-wrapped single-wall carbon nanotubes. J. Phys. Chem. C 115(1), 270 (2011).CrossRefGoogle Scholar
Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., and Hersam, M.C.: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1(1), 60 (2006).CrossRefGoogle ScholarPubMed
Carvalho, E.J.F. and dos Santos, M.C.: Role of surfactants in carbon nanotubes density gradient separation. ACS Nano. 4(2), 765 (2010).CrossRefGoogle ScholarPubMed
Si, R., Wang, K., Chen, T., and Chen, Y.: Chemometric determination of the length distribution of single walled carbon nanotubes through optical spectroscopy. Anal. Chim. Acta 708(1–2), 28 (2011).CrossRefGoogle ScholarPubMed
Collins, P.G., Bradley, K., Ishigami, M., and Zettl, A.: Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459), 1801 (2000).CrossRefGoogle ScholarPubMed
Kim, W., Javey, A., Vermesh, O., Wang, O., Li, Y.M., and Dai, H.J.: Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3(2), 193 (2003).CrossRefGoogle Scholar
Pike, G.E. and Seager, C.H.: Percolation and conductivity-computer study. 1. Phys. Rev. B: Condens. Matter 10(4), 1421 (1974).CrossRefGoogle Scholar
Lee, C.W., Han, X.D., Chen, F.M., Wei, J., Chen, Y., Chan-Park, M.B., and Li, L.J.: Solution-processable carbon nanotubes for semiconducting thin-film transistor devices. Adv. Mater. 22(11), 1278 (2010).CrossRefGoogle ScholarPubMed