Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T07:13:51.789Z Has data issue: false hasContentIssue false

Ion beam enhanced thermal depolymerization of poly(methyl methacrylate)

Published online by Cambridge University Press:  26 July 2012

M. E. Fragalà
Affiliation:
Dipartimento di Scienze Chimiche dell’ Università di Catania, Viale A.Doria, 6-95125 Catania, Italy
G. Compagnini
Affiliation:
Dipartimento di Scienze Chimiche dell’ Università di Catania, Viale A.Doria, 6-95125 Catania, Italy
O. Puglisi
Affiliation:
Dipartimento di Scienze Chimiche dell’ Università di Catania, Viale A.Doria, 6-95125 Catania, Italy
Get access

Extract

Ion beam enhanced thermal depolymerization of poly(methyl methacrylate) thin films, 1–2 µm thick, has been studied in the temperature range 100–400 °C using a 300 keV He+ beam at very low fluence (5 × 1010−5 × 1011 ions cm−2). A relevant monomer evolution (mass signal m/z = 100) at temperature (150 °C) well below the conventional degradation temperature (360 °C) has been detected during irradiation. The observed phenomenon is discussed in terms of activation energies and diffusion processes within the investigated films. The possibility offered by this phenomenon of performing a microlithography process in only one step is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Toulemonde, M., Costantini, J. M., Dufour, Ch., Meftah, A., Paumier, E., and Studer, F., Nucl. Instrum. Methods B 116, 37 (1996).CrossRefGoogle Scholar
2.Trautmann, C., Bouffard, S., and Spohr, R., Nucl. Instrum. Methods B 116, 429 (1996).CrossRefGoogle Scholar
3.Hall, T.M., Wagner, A., and Thompson, L. F., J. Vac. Sci. Technol. 16, 1889 (1979).CrossRefGoogle Scholar
4.Lehockey, E. M., Reid, I., and Hill, I., J. Vac. Sci. Technol. A6, 2221 (1988).CrossRefGoogle Scholar
5.Brunner, S., Ruck, D.M., Frank, W.F.X, Linke, F., Schosser, A., and Behringer, U., Nucl. Instrum. Methods B 89, 373 (1994).CrossRefGoogle Scholar
6.Bywater, S., J. Phys. Chem. 57, 879 (1953).CrossRefGoogle Scholar
7.Jellinek, H.H.G and Luh, M. D., Makromolekulare Chemie 115, 89 (1968).CrossRefGoogle Scholar
8.Manring, L.E., Macromol. 22, 2677 (1989).Google Scholar
9.Burnett, M., in Mechanism of Polymer Reactions (Interscience Publishers Inc., New York, 1954), p. 350.Google Scholar
10.Adesisa, I., Anderson, C., and Wolf, E. D., J. Vac. Sci. Technol. B1, 1182 (1983).CrossRefGoogle Scholar
11.Egusa, S., Ishigure, K., and Tabata, Y., Macromol. 12, 939 (1979).CrossRefGoogle Scholar
12.Komuro, M., Atoda, N., and Kawakatzu, H., J. Electrochem. Soc. 126, 483 (1979).CrossRefGoogle Scholar
13.Fink, D., Chadderton, L. T., Hosoi, F., Omichi, H., Schmoldt, A., Wang, L., Klett, R., and Hillenbrand, J., Nucl. Instrum. Methods B 91, 146 (1994).CrossRefGoogle Scholar
14.Corelli, J. C., Steckl, A. J., Pulver, D., and Randall, J. N., Nucl. Instrum. Methods B 19/20, 1009 (1987).CrossRefGoogle Scholar
15.Licciardello, A., Fragalà, M. E., Foti, G., Compagnini, G., and Puglisi, O., Nucl. Instrum. Methods B 116, 168 (1996).CrossRefGoogle Scholar
16.Licciardello, A., Fragalà, M. E., Compagnini, G., and Puglisi, O., Nucl. Instrum. Methods B 122, 589 (1997).CrossRefGoogle Scholar
17.Davenas, J., Thevenard, P., Boiteux, G., Fallavier, M., and Lu, X. L., Nucl. Instrum. Methods B 46, 317 (1990).CrossRefGoogle Scholar
18.Gupta, A., Liang, R., Tsay, F. D., and Moacanin, J., Macromol. 13, 1696 (1980).CrossRefGoogle Scholar
19.Todd, A., J. Polym. Sci. 42, 223 (1960).CrossRefGoogle Scholar
20.Shmoldt, A., Chadderton, L.T., and Fink, D., Radiation Effects and Defects in Solids 128, 277 (1994).CrossRefGoogle Scholar
21.Venkatesan, T., Edelson, D., and Brown, W.L., Appl. Phys. Lett. 43, 4 (1983).Google Scholar
22.Manring, L.E., Macromol. 24, 3304 (1991).CrossRefGoogle Scholar
23.Torrisi, L., Ciavola, G., Percolla, R., and Benyaich, F., Nucl. Instrum. Methods B 116, 473 (1996).CrossRefGoogle Scholar
24.Manring, L.E., Sogah, D. Y., and Cohen, G.M., Macromol. 22, 4654 (1989).Google Scholar
25.Kashiwagi, T., Inaba, A., Brown, J.E., Hatada, K., Kitayama, T., and Masuda, E., Macromol. 19, 2160 (1986).CrossRefGoogle Scholar
26.Grassie, N. and Melville, H. W., Proc. R. Soc. A 199, 1 (1949).Google Scholar
27.Rizzati, M. R., de Araûjo, M. A., and Livi, R. P., Nucl. Instrum. Methods B 91, 450 (1994).CrossRefGoogle Scholar
28.MacCallum, J. R. and Schoff, C. K., Trans. Faraday Soc. 67, 2372 (1971).CrossRefGoogle Scholar