We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., and Dubonos, S.V.: Electric field effect in atomically thin carbon films. Science306, 666–669 (2004).Google Scholar
Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater.6, 183–191 (2007).Google Scholar
6
Cooper, D.R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., and Horth, A.: Experimental review of graphene. Condens. Matter Phys.2012, 1–56 (2012).Google Scholar
7
Geim, A.K.: Graphene: Status and prospects. Science324, 1530–1534 (2009).Google Scholar
8
Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev.39, 228–240 (2010).CrossRefGoogle ScholarPubMed
9
Allen, M.J., Tung, V.C., and Kaner, R.B.: Honeycomb carbon: A review of graphene. Chem. Rev.110, 132–145 (2010).Google Scholar
10
Avouris, P.: Graphene: Electronic and photonic properties and devices. Nano Lett.10, 4285–4294 (2010).Google Scholar
11
Grigorenko, A.N., Polini, M., and Novoselov, K.S.: Graphene plasmonics. Nat. Photonics6, 749–758 (2012).Google Scholar
12
Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y.: Graphene based electrochemical sensors and biosensors: A review. Electroanalysis22, 1027–1036 (2010).CrossRefGoogle Scholar
Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., and Seal, S.: Graphene based materials: Past, present and future. Prog. Mater. Sci.56, 1178–1271 (2011).Google Scholar
15
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.7, 699–712 (2012).Google Scholar
16
Chhowalla, M., Shin, H.S., Eda, G., Li, L-J, Loh, K.P., and Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem.5, 263–275 (2013).CrossRefGoogle ScholarPubMed
17
Bresnehan, M.S., Hollander, M.J., Wetherington, M., LaBella, M., Trumbull, K.A., and Cavalero, R.: Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: Toward wafer-scale, high-performance devices. ACS Nano6, 5234–5241 (2012).Google Scholar
18
Lee, G-H, Yu, Y-J, Cui, X., Petrone, N., Lee, C-H, and Choi, M.S.: Flexible and transparent MoS2 field-effect transistors on hexagonal boron titride-graphene heterostructures. ACS Nano7, 7931–7936 (2013).Google Scholar
19
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol.6, 147–150 (2011).Google Scholar
20
Gutiérrez, H.R., Perea-López, N., Elías, A.L., Berkdemir, A., Wang, B., and Lv, R.: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett.13, 3447–3454 (2013).Google Scholar
21
Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., and Ealet, B.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett.97, 223109 (2010).Google Scholar