Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T01:16:58.189Z Has data issue: false hasContentIssue false

Influence of yttria and zirconia additions on spark plasma sintering of alumina composites

Published online by Cambridge University Press:  30 March 2015

Dibyendu Chakravarty*
Affiliation:
Center for Nanomaterials, International Advanced Research Center for Powder Metallurgy and New Materials (ARCI), Balapur P.O., Hyderabad, Telangana 500005, India; and Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
Atul H. Chokshi
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The mechanisms of densification and creep were examined during spark plasma sintering (SPS) of alumina doped with a low and high level of zirconia or yttria, over a temperature range of 1173–1573 K and stresses between 25 and 100 MPa. Large additions of yttria led clearly to in situ reactions during SPS and the formation of a yttrium-aluminum garnet phase. Dopants generally lead to a reduction in the densification rate, with substantial reductions noted in samples with ∼5.5 vol% second phase. In contrast to a stress exponent of n ∼ 1 for pure alumina, the doped aluminas displayed n ∼ 2 corresponding to an interface-controlled diffusion process. The higher activation energies in the composites are consistent with previous data on creep and changes in the interfacial energies. The results reveal a compensation effect, such that an increase in the activation energy is accompanied by a corresponding increase in the pre-exponential term for diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006).Google Scholar
Munir, Z.A., Quach, D.V., and Ohyanagi, M.: Electric current activation of sintering: A review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 1 (2011).CrossRefGoogle Scholar
Viswanathan, V., Laha, T., Balani, K., Agarwal, A., and Seal, S.: Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng., R 54, 121 (2006).Google Scholar
Wakai, F., Iga, T., and Nagano, T.: Effect of dispersion of zirconia particles on creep of fine-grained alumina. J. Ceram. Soc. Jpn. 96, 1206 (1988).Google Scholar
Gruffel, P. and Carry, C.: Effect of grain size on yttrium grain boundary segregation in fine-grained alumina. J. Eur. Ceram. Soc. 11, 189 (1993).Google Scholar
French, J.D., Zhao, J., Harmer, M.P., Chan, H.M., and Miller, G.A.: Creep of duplex microstructures. J. Am. Ceram. Soc. 77, 2857 (1994).Google Scholar
Yoshida, H., Ikuhara, Y., and Sakuma, T.: High temperature creep resistance in rare-earth doped, fine grained alumina. J. Mater. Res. 13, 2597 (1998).Google Scholar
Cho, J., Wang, C.M., Chan, H.M., Rickman, J.M., and Harmer, M.P.: Role of segregating dopants on the improved creep resistance of aluminium oxide. Acta Mater. 47, 4197 (1999).Google Scholar
Voytovych, R., Maclaren, I., Gulgun, M.A., Cannon, R.M., and Ruhle, M.. The effect of yttrium on densification and grain growth in α-alumina. Acta Mater. 50, 3453 (2002).Google Scholar
Stough, M.A. and Hellmann, J.R.: Solid solubility and precipitation in a single crystal alumina-zirconia system. J. Am. Ceram. Soc. 85, 2895 (2002).Google Scholar
Yoshida, H., Ikuhara, Y., and Sakuma, T.: High temperature plastic deformation related to grain boundary chemistry in cation-doped alumina. Mater. Sci. Eng., A 387389, 723 (2004).Google Scholar
Satapathy, L.N. and Chokshi, A.H.: Microstructural development and creep deformation in an alumina-5% yttrium aluminium garnet composite. J. Am. Ceram. Soc. 88, 2848 (2005).Google Scholar
Wakai, F., Nagano, T., and Iga, T.: Hardening in creep of alumina by zirconium segregation at the grain boundary. J. Am. Ceram. Soc. 80, 2361 (1997).Google Scholar
Wang, J. and Raj, R.: Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure alumina and alumina doped with zirconia or titania. J. Am. Ceram. Soc. 73, 1172 (1990).Google Scholar
Wang, J. and Raj, R.: Activation energy for the sintering of two-phase alumina/zirconia ceramics. J. Am. Ceram. Soc. 74, 1959 (1991).CrossRefGoogle Scholar
Palmero, P., Fantozzi, G., Lomello, F., Bonnefont, G., and Montanaro, L.: Creep behavior of alumina/YAG composites prepared by different sintering routes. Ceram. Int. 38, 433441 (2012).Google Scholar
Yoshimura, M., Ojhi, T., Sando, M., Choa, Y.H., Sekina, T., and Niihara, K.: Synthesis of nanograined ZrO2-based composite by chemical processing and pulsed electric current sintering. Mater. Lett. 38, 18 (1999).Google Scholar
Takano, Y., Ozawa, T., Yoshinaka, M., Hirota, K., and Yamaguchi, O.: Microstructure and mechanical properties of ZrO2(2Y)-toughened Al2O3 ceramics fabricated by spark plasma sintering. J. Mater. Synth. Process. 7, 107 (1999).Google Scholar
Gao, L., Wang, H.Z., Hong, J.S., Miyamoto, H., Miyamoto, K., Nishikawa, Y., and Torre, S.D.D.L.: SiC-ZrO2(3Y)-Al2O3 nanocomposites superfast densified by spark plasma sintering. Nanostruct. Mater. 11, 43 (1999).CrossRefGoogle Scholar
Hong, J., Gao, L., Torre, S.D.D.L., Miyamoto, H., and Miyamoto, K.: Spark plasma sintering and mechanical properties of ZrO2 (Y2O3)-Al2O3 composites. Mater. Lett. 43, 27 (2000).Google Scholar
Jayaseelan, D.D., Kondo, N., Rani, D.A., Ueno, S., Ojhi, T., and Kanzaki, S.: Pulsed electric current sintering of Al2O3/3 vol% ZrO2 with constrained grains and high strength. J. Am. Ceram. Soc. 85, 2870 (2002).Google Scholar
Lange, F.F. and Hirlinger, M.M.: Hindrance of grain growth in Al2O3 by ZrO2 inclusion. J. Am. Ceram. Soc. 67, 164 (1984).Google Scholar
ASTM C373-88: Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity and Apparent Specific Gravity of Fired Whiteware Products, (ASTM International, West Conshohocken, PA, 2006).Google Scholar
Mendelson, M.I.: Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc. 52, 443 (1969).Google Scholar
Chakravarty, D. and Chokshi, A.H.: Direct characterizing of densification mechanisms during spark plasma sintering. J. Am. Ceram. Soc. 97, 765 (2014).Google Scholar
Gao, L., Shen, Z., Miyamoto, H., and Nygren, M.: Superfast densification in oxide-oxide ceramic composites. J. Am. Ceram. Soc. 82, 1061 (1999).CrossRefGoogle Scholar
Ghosh, S., Chokshi, A.H., Lee, P., and Raj, R.: A huge effect of weak dc electrical fields on grain growth of zirconia. J. Am. Ceram. Soc. 92, 1856 (2009).CrossRefGoogle Scholar
Smith, C-S.: Grains, phases and interfaces: An interpretation of microstructures. Trans. AMIE. 175, 15 (1948).Google Scholar
Prasad, M.J.N.V. and Chokshi, A.H.: Microstructural stability and superplasticity in an electrodeposited nanocrystalline Ni-P alloy. Acta Mater. 59, 4055 (2011).CrossRefGoogle Scholar
Arzt, E., Ashby, M.F., and Verrall, R.A.: Interface controlled diffusional creep. Acta Metall. 31, 1977 (1983).Google Scholar
Borisov, V.T., Golikov, V.M., and Shcherbedinski, G.V.: On the relation between diffusion co-efficients and grain-boundary energies. Phys. Met. Metallogr. 17, 881 (1964).Google Scholar
Coble, R.L.: Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J. Appl. Phys. 41, 4798 (1970).Google Scholar
Schneibel, J.H. and Hazzledine, P.M.: The role of Coble creep and interface control in superplastic Sn-Pb alloys. J. Mater. Sci. 18, 562 (1983).Google Scholar
Sherby, O.D. and Wadsworth, J.: Superplasticity—Recent advances and future directions. Prog. Mater. Sci. 33, 169 (1989).Google Scholar
Langdon, T.G.: A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437 (1994).Google Scholar
Cheng, H., Caram, H.S., Schiesser, W.E., Rickman, J.M., Chan, H.M., and Harmer, M.P.: Oxygen grain-boundary transport in polycrystalline alumina using wedge-geometry bilayer samples: Effect of Y-doping. Acta Mater. 58, 2442 (2010).Google Scholar
Heuer, A.H.: Oxygen and aluminum diffusion in α-alumina. How much do we really understand? J. Eur. Ceram. Soc. 28, 1495 (2008).Google Scholar
Chokshi, A.H.: The densification, superplastic deformation and fracture characteristics of a 3 mol% yttria stabilized zirconia. In Progress in Advanced Materials and Mechanics, Tzuchiang, W. and Chou, T-W. eds. (Peking University Press, China, 1996); 381386.Google Scholar
Chokshi, A.H.: Diffusion, diffusion creep and grain growth characteristics of nanocrystalline and fine-grained monoclinic, tetragonal and cubic zirconia. Scr. Mater. 48, 791 (2003).Google Scholar
Cannon, R.M., Rhodes, W.H., and Heuer, A.H.: Plastic deformation of fine grained alumina: I. Interface controlled diffusional creep. J. Am. Ceram. Soc. 63, 46 (1980).Google Scholar
Gottstein, G. and Shvindlerman, L.S.: The compensation effect in thermally activated interface processes. Interface Sci. 6, 265 (1998).Google Scholar
Divinski, S.V. and Edelhoff, H.: Diffusion and segregation of silver in copper ∑5(310) grain boundary. Phys. Rev. B 85, 144104 (2012).Google Scholar
Kim, M.J., Cho, Y.K., and Yoon, D.Y.: Kinked grain boundaries in alumina doped with Y2O3 . J. Am. Ceram. Soc. 87, 717 (2004).Google Scholar
Cantwell, P.R., Tang, M., Dillon, S.J., Luo, J., Rohrer, G.S., and Harmer, M.P.: Grain boundary complexions. Acta Mater. 62, 1 (2014).Google Scholar
Behera, S.K., Cantwell, P.R., and Harmer, M.P.: A grain boundary mobility discontinuity in reactive element Zr-doped alumina. Scr. Mater. 9091, 33 (2014).Google Scholar