Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T07:22:08.189Z Has data issue: false hasContentIssue false

In situ TEM study on the microstructural evolution during electric fatigue in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramic

Published online by Cambridge University Press:  28 August 2014

Hanzheng Guo*
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA
Xiaoli Tan
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA
Shujun Zhang
Affiliation:
Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, we report an experimental technique with nanometer resolution to reveal the microstructural mechanism for electric fatigue in ferroelectrics. The electric field in situ transmission electron microscopy (TEM) was used to directly visualize the domain evolution during the fatigue process in a 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramic. The structure–property relationship was well demonstrated by combining the microscopic observations with corresponding dielectric, piezoelectric, and ferroelectric properties measured on bulk specimens. It was found that the domain switching capability was substantially suppressed after 103 cycles of bipolar fields, leading to an immobilized domain configuration thereafter. Correspondingly, a pronounced degradation of the functionality of the ceramic was manifested, accompanying with a coercive field bumping and polarization current density peak broadening. The reduction of the polarization, dielectric constant, and piezoelectric coefficient were found to follow a power-law relation. Seed inhibition mechanism was suggested to be responsible for the observed fatigue behaviors.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lupascu, D.C.: Fatigue in Ferroelectric Ceramics and Related Issues (Springer, Heidelberg, 2004).CrossRefGoogle Scholar
Scott, J.F.: Ferroelectric Memories (Springer, Berlin, 2000).CrossRefGoogle Scholar
Mathews, S., Ramesh, R., Venkatesan, T., and Benedetto, J.: Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238 (1997).Google Scholar
Baek, S.H., Jang, H.W., Folkman, C.M., Li, Y.L., Winchester, B., Zhang, J.X., He, Q., Chu, Y.H., Nelson, C.T., Rzchowski, M.S., Pan, X.Q., Ramesh, R., Chen, L.Q., and Eom, C.B.: Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309 (2010).Google Scholar
Bernstein, S.D., Wong, T.Y., Kisler, Y., and Tustison, R.W.: Fatigue of ferroelectric PbZrxTiyO3 capacitors with Ru and RuOx electrodes. J. Mater. Res. 8(1), 12 (1993).CrossRefGoogle Scholar
Maksymovych, P., Jesse, S., Yu, P., Ramesh, R., Baddorf, A.P., and Kalinin, S.V.: Polarization control of electron tunneling into ferroelectric surfaces. Science 324, 1421 (2009).CrossRefGoogle ScholarPubMed
Lupascu, D.C. and Rödel, J.: Fatigue in bulk lead zirconate titanate actuator materials. Adv. Eng. Mater. 7(10), 882 (2005).CrossRefGoogle Scholar
Kim, S-H., Hong, J.G., Streiffer, S.K., and Kingon, A.I.: The effect of RuO2/Pt hybrid bottom electrode structure on the leakage and fatigue properties of chemical solution derived Pb(ZrxTi1-x)O3 thin films. J. Mater. Res. 14(3), 1018 (1999).CrossRefGoogle Scholar
Tagantsev, A.K., Stolichnov, I., Colla, E.L., and Setter, N.: Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90, 1387 (2001).CrossRefGoogle Scholar
Lou, X.J.: Polarization fatigue in ferroelectric thin films and related materials. J. Appl. Phys. 105, 024101 (2009).CrossRefGoogle Scholar
Larsen, P.K., Dormans, G.J.M., Taylor, D.J., and van Veldhoven, P.J.: Ferroelectric properties and fatigue of Pb0.51Ti0.49O3 thin films of varying thickness: Blocking layer model. J. Appl. Phys. 76, 2405 (1994).CrossRefGoogle Scholar
Colla, E.L., Tagantsev, A.K., Taylor, D.V., and Kholkin, A.L.: Fatigued state of Pt-PZT-Pt system. Integr. Ferroelectr. 18, 19 (1997).Google Scholar
Warren, W.L., Dimos, D., Tuttle, B.A., Pike, G.E., Schwartz, R.W., Clews, P.J., and McIntyre, D.C.: Polarization suppression in Pb(Zr, Ti)O3 thin films. J. Appl. Phys. 77, 6695 (1995).Google Scholar
Lou, X.J., Zhang, M., Redfern, S.A.T., and Scott, J.F.: Local phase decomposition as a cause of polarization fatigue in ferroelectric thin films. Phys. Rev. Lett. 97, 177601 (2006).Google ScholarPubMed
Kim, S-H., Kim, D-J., Hong, J.G., Streiffer, S.K., and Kingon, A.I.: Imprint and fatigue properties of chemical solution derived Pb1-xLa(ZryTi1-y)1-x/4O3 thin films. J. Mater. Res. 14(4), 1371 (1999).Google Scholar
Shannigrahi, S.R., Lee, S-H., and Jang, H.M.: Fatigue-free La-modified Pb(Zr, Ti)O3 capacitors using a seed layer. J. Mater. Res. 17(8), 1884 (2002).Google Scholar
Zou, X., You, L., Chen, W., Ding, H., Wu, D., Wu, T., Chen, L., and Wang, J.: Mechanism of polarization fatigue in BiFeO3. ACS Nano 6(10), 8997 (2012).Google Scholar
Yang, S.M., Kim, T.H., Yoon, J-G., and Noh, T.W.: Nanoscale observation of time-dependent domain wall pinning as the origin of polarization fatigue. Adv. Funct. Mater. 22(11), 2310 (2012).Google Scholar
Baek, S-H., Folkman, C.M., Park, J-W., Lee, S., Bark, C-W., Tybell, T., and Eom, C-B.: The nature of polarization fatigue in BiFeO3. Adv. Mater. 23(14), 1621 (2011).Google Scholar
Gruverman, A., Auciello, O., and Tokumoto, H.: Nanoscale investigation of fatigue effects in Pb(Zr, Ti) films. Appl. Phys. Lett. 69, 3191 (1996).Google Scholar
Colla, E.L., Hong, S., Taylor, D.V., Tagantsev, A.K., Setter, N., and No, K.: Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr, Ti)O3 thin film capacitors with Pt electrodes. Appl. Phys. Lett. 72, 2763 (1998).CrossRefGoogle Scholar
Colla, E.L., Stolichnov, I., Bradely, P.E., and Setter, N.: Direct observation of inversely polarized frozen nanodomains in fatigued ferroelectric memory capacitors. Appl. Phys. Lett. 82, 1604 (2003).Google Scholar
Tsurekawa, S., Hatao, H., Takahashi, H., and Morizono, Y.: Changes in ferroelectric domain structure with electric fatigue in Li0.06(Na0.5K0.5)0.94NbO3 ceramics. Jpn. J. Appl. Phys. 50, 09NC02 (2011).Google Scholar
Do, D-H., Evans, P.G., Isaacs, E.D., Kim, D.M., Eom, C.B., and Dufresne, E.M.: Structural visualization of polarization fatigue in epitaxial ferroelectric oxide devices. Nat. Mater. 3, 365 (2004).Google Scholar
Guo, H.Z., Zhang, S.J., Beckman, S.P., and Tan, X.: Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics. J. Appl. Phys. 114, 154102 (2013).Google Scholar
Tan, X., Ma, C., Frederick, J., Beckman, S., and Webber, K.G.: The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J. Am. Ceram. Soc. 94(12), 4091 (2011).CrossRefGoogle Scholar
Ma, C., Guo, H.Z., Beckman, S.P., and Tan, X.: Creation and destruction of morphotropic phase boundaries through electrical poling: A case study of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoelectrics. Phys. Rev. Lett. 109, 107602 (2012).Google Scholar
Young, S.E., Guo, H.Z., Ma, C., Kessler, M.R., and Tan, X.: Thermal analysis of phase transitions in perovskite electroceramics. J. Therm. Anal. Calorim. 115(1), 587 (2014).CrossRefGoogle Scholar
Guo, H.Z., Zhou, C., Ren, X., and Tan, X.: Unique single-domain state in a polycrystalline ferroelectric ceramic. Phys. Rev. B 89, 100104(R) (2014).Google Scholar
Qu, W., Zhao, X., and Tan, X.: Evolution of nanodomains during the electric-field-induced relaxor to normal ferroelectric phase transition in a Sc-doped Pb (Mg1/3Nb2/3)O3 ceramic. J. Appl. Phys. 102, 084101 (2007).Google Scholar
Tan, X., He, H., and Shang, J.K.: In situ transmission electron microscopy studies of electric-field-induced phenomena in ferroelectrics. J. Mater. Res. 20(7), 1641 (2005).Google Scholar
Guo, H., Ma, C., Liu, X.M., and Tan, X.: Electrical poling below coercive field for large piezoelectricity. Appl. Phys. Lett. 102, 092902 (2013).Google Scholar
Tan, X. and Shang, J.K.: In situ transmission electron microscopy study of electric-field-induced grain-boundary cracking in lead zirconate titanate. Philos. Mag. A 82(8), 1463 (2002).CrossRefGoogle Scholar
He, H. and Tan, X.: Electric-field-induced transformation of incommensurate modulations in antiferroelectric Pb0.99Nb0.02[(Zr1-xSnx)1-yTiy]0.98O3. Phys. Rev. B 72, 024102 (2005).Google Scholar
Tan, X., Xu, Z., Shang, J.K., and Han, P.: Direct observations of electric field-induced domain boundary cracking in <001> oriented piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal. Appl. Phys. Lett. 77, 1529 (2000).CrossRefGoogle Scholar
Wang, H., Jiang, B., Shrout, T.R., and Cao, W.: Electromechanical properties of fine-grain 0.7Pb (Mg1/3Nb2/3)O3-0.3PbTiO3. IEEE Trans. Ultrason. Ferroelectr., Freq. Control 51(7), 908 (2004).CrossRefGoogle Scholar
McMeeking, R.M.: Electrostrictive stresses near crack-like flaw. J. Appl. Math. Phys. 40(5), 615 (1989).Google Scholar
Viehland, D., Li, J., and Colla, E.V.: Domain structure changes in (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 with composition, dc bias, and ac field. J. Appl. Phys. 96(6), 3379 (2004).Google Scholar
Bai, F., Li, J., and Viehland, D.: Domain engineered states over various length scales in (001)-oriented Pb(Mg1/3Nb2/3)O3-x%PbTiO3 crystals: Electrical history dependence of hierarchal domains. J. Appl. Phys. 97, 054103 (2005).Google Scholar
Wu, H., Xue, D., Lv, D., Gao, J., Guo, S., Zhou, Y., Ding, X., Zhou, C., Yang, S., Yang, Y., and Ren, X.: Microstructure at morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramic: Coexistence of nano-scaled {110}-type rhombohedral twin and {110}-type tetragonal twin. J. Appl. Phys. 112, 052004 (2012).Google Scholar
Noheda, B., Cox, D.E., Shirane, G., Gao, J., and Ye, Z-G.: Phase diagram of the ferroelectric relaxor (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3. Phys. Rev. B 66, 054104 (2002).Google Scholar
Wang, H., Zhu, J., Lu, N., Bokov, A.A., Ye, Z-G., and Zhang, X.W.: Hierarchical micro-/nanoscale domain structure in MC phase of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystal. Appl. Phys. Lett. 89, 042908 (2006).Google Scholar
Sato, Y., Hirayama, T., and Ikuhara, Y.: Monoclinic nanodomains in morphotropic phase boundary Pb(Mg1/3Nb2/3)O3-PbTiO3. Appl. Phys. Lett. 104, 082905 (2014).Google Scholar
Kurushima, K., Kobayashi, K., and Mori, S.: Nanodomain structures with hierarchical inhomogeneities in PMN-PT. IEEE Trans. Ultrason. Ferroelectr., Freq. Control 59(9), 1900 (2012).Google Scholar
Dawber, M. and Scott, J.F.: A model for fatigue in ferroelectric perovskite thin films. Appl. Phys. Lett. 76(8), 1060 (2000).CrossRefGoogle Scholar
Lupascu, D.C. and Rabe, U.: Cyclic cluster growth in ferroelectric perovskites. Phys. Rev. Lett. 89(18), 187601 (2002).CrossRefGoogle ScholarPubMed
Chou, C-C., Hou, C-S., and Yeh, T-H.: Domain pinning behavior of ferroelectric Pb1-xSrxTiO3 ceramics. J. Eur. Ceram. Soc. 25, 2505 (2005).Google Scholar
Chou, C-C., Hou, C-S., and Pan, H-C.: Domain boundary pinning and nucleation of ferroelectric (Pb1-xSrx)TiO3 ceramics. Ferroelectrics 261, 185 (2001).Google Scholar
Lee, J.J., Thio, C.L., and Desu, S.B.: Electrode contacts on ferroelectric Pb(ZrxTi1-x)O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties. J. Appl. Phys. 78, 5073 (1995).Google Scholar
Lou, X.J. and Wang, J.: Bipolar and unipolar electrical fatigue in ferroelectric lead zirconate titanate thin films: An experimental comparison study. J. Appl. Phys. 108, 034104 (2010).CrossRefGoogle Scholar
Lou, X.J. and Wang, J.: Unipolar and bipolar fatigue in antiferroelectric lead zirconate thin films and evidences for switching-induced charge injection inducing fatigue. Appl. Phys. Lett. 96, 102906 (2010).Google Scholar
Colla, E.L., Kholkin, A.L., Taylor, D., Tagantsev, A.K., Brooks, K.G., and Setter, N.: Characterization of the fatigued state of ferroelectric PZT thin-film capacitors. Microelectron. Eng. 29, 145 (1995).Google Scholar
Thompson, C., Munkholm, A., Streiffer, S.K., Stephenson, G.B., Ghosh, K., Eastman, J.A., Auciello, O., Bai, G-R., Lee, M.K., and Eom, C.B.: X-ray scattering evidence for the structural nature of fatigue in epitaxial Pb(Zr,Ti)O3 films. Appl. Phys. Lett. 78, 3511 (2001).Google Scholar
Schloss, L.F. and Mclntyre, P.C.: Polarization recovery of fatigued Pb(Zr,Ti)O3 thin films: Switching current studies. J. Appl. Phys. 93, 1743 (2003).Google Scholar
Kubel, F. and Schmid, H.: Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr., B 46, 698 (1990).CrossRefGoogle Scholar
Daniels, J.E., Finlayson, T.R., Davis, M., Damjanovic, D., Studer, A.J., Hoffman, M., and Jones, J.L.: Neutron diffraction study of the polarization reversal mechanism in [111]C-oriented Pb(Zn1/3Nb2/3)O3-xPbTiO3. J. Appl. Phys. 101, 104108 (2007).CrossRefGoogle Scholar
Zhu, W. and Cross, L.E.: Direct evidence of ferroelastic participation in 180° polarization switching and fatigue for 111 oriented rhombohedral ferroelectric 0.955 Pb(Zn1/3Nb2/3)O3:0.045PbTiO3 single crystals. Appl. Phys. Lett. 84, 2388 (2004).Google Scholar
Hsieh, C-Y., Chen, Y-F., Shih, W.Y., Zhu, Q., and Shih, W-H.: Direct observation of two-step polarization reversal by an opposite field in a substrate-free piezoelectric thin sheet. Appl. Phys. Lett. 94, 131101 (2009).Google Scholar
Cao, W.: Switching mechanism in single crystal 0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3. Ferroelectrics 290, 107 (2003).Google Scholar
Kitanaka, Y., Yanai, K., Noguchi, Y., Miyayama, M., Kagawa, Y., Moriyoshi, C., and Kuroiwa, Y.: Non-180° polarization rotation of ferroelectric (Bi0.5Na0.5)TiO3 single crystals under electric field. Phys. Rev. B 89, 104104 (2014).CrossRefGoogle Scholar
Shur, V.Y., Akhmatkhanov, A.R., and Baturin, I.S.: Fatigue effect in ferroelectric crystals: Growth of the frozen domains. J. Appl. Phys. 111, 124111 (2012).Google Scholar