Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T04:19:03.833Z Has data issue: false hasContentIssue false

In situ characterization of ion-irradiation enhanced creep of third generation Tyranno SA3 SiC fibers

Published online by Cambridge University Press:  10 February 2015

Juan Huguet-Garcia*
Affiliation:
CEA, DEN, Service de Recherches Métallurgiques Appliquées, F-91191 Gif-sur-Yvette, France
Aurélien Jankowiak
Affiliation:
CEA, DEN, Service de Recherches Métallurgiques Appliquées, F-91191 Gif-sur-Yvette, France
Sandrine Miro
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette, France
Thierry Vandenberghe
Affiliation:
CEA, DEN, Service de Recherches Métallurgiques Appliquées, F-91191 Gif-sur-Yvette, France
Clara Grygiel
Affiliation:
CIMAP, CEA-CNRS-ENSICAEN-UCBN, BP 5133, 14070 Caen Cedex 5, France
Isabelle Monnet
Affiliation:
CIMAP, CEA-CNRS-ENSICAEN-UCBN, BP 5133, 14070 Caen Cedex 5, France
Jean-Marc Costantini
Affiliation:
CEA, DEN, Service de Recherches Métallurgiques Appliquées, F-91191 Gif-sur-Yvette, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Subcritical crack growth in SiC based composites is controlled by fiber creep processes. This lifetime limiting mechanism is of special concern under irradiation as it can enhance creep related mechanisms. To evaluate the impact of irradiation on the mechanical behavior of Tyranno SA3 fibers, in situ tensile tests were conducted on single fibers. These tests were conducted under irradiation with 92 MeV Xe23+ ions at 1000 °C for different ion fluxes and stress loads using a dedicated experimental facility. It has been found that irradiation induces time-dependent deformation of the fibers under conditions where thermal creep is negligible, i.e., 300 MPa and 1000 °C. Irradiation strain rate shows linear dependence with the ion beam flux and square root dependence with the applied stress. Finally, the irradiation creep compliance is estimated to be 1.01 × 10−5 MPa−1 dpa−1.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Khalid Hattar

References

REFERENCES

Iveković, A., Novak, S., Dražić, G., Blagoeva, D., and de Vicente, S.G.: Current status and prospects of SiCf/SiC for fusion structural applications. J. Eur. Ceram. Soc. 33(10), 15771589 (2013).Google Scholar
Snead, L.L., Nozawa, T., Ferraris, M., Katoh, Y., Shinavski, R., and Sawan, M.: Silicon carbide composites as fusion power reactor structural materials. J. Nucl. Mater. 417(13), 330339 (2011).Google Scholar
Bunsell, A.R. and Piant, A.: A review of the development of three generations of small diameter silicon carbide fibres. J. Mater. Sci. 41(3), 823839 (2006).Google Scholar
Henager, C.H. Jr., Lewinsohn, C., and Jones, R.H.: Subcritical crack growth in CVI SiC f/SiC composites at elevated temperatures: Effect of fiber creep rate. Acta Mater. 49, 37273738 (2001).Google Scholar
Was, G.S. and Averback, R.S.: Radiation damage using ion beams. In Comprehensive Nuclear Materials, Elsevier, 2012; pp. 195221.Google Scholar
Price, R.J.: Properties of silicon carbide for nuclear fuel particle coatings. Nucl. Technol. 35(2), 320336 (1977).Google Scholar
Morscher, G.N. and DiCarlo, J.A.: A simple test for thermomechanical evaluation of ceramic fibers. J. Am. Ceram. Soc. 75(1), 136140 (1992).Google Scholar
Katoh, Y., Snead, L.L., Hinoki, T., Kondo, S., and Kohyama, A.: Irradiation creep of high purity CVD silicon carbide as estimated by the bend stress relaxation method. J. Nucl. Mater. 367370, 758763 (2007).Google Scholar
Katoh, Y., Snead, L.L., Parish, C.M., and Hinoki, T.: Observation and possible mechanism of irradiation induced creep in ceramics. J. Nucl. Mater. 434(13), 141151 (2013).CrossRefGoogle Scholar
Scholz, R.: Deuteron irradiation creep of chemically vapor deposited silicon carbide fibers. J. Nucl. Mater. 254(1), 7477 (1998).Google Scholar
Shankar, V. and Was, G.S.: Proton irradiation creep of beta-silicon carbide. J. Nucl. Mater. 418(13), 198206 (2011).CrossRefGoogle Scholar
Jankowiak, A., Grygiel, C., Monnet, I., Serruys, Y., Colin, C., Miro, S., Gelebart, L., Gosmain, L., and Costantini, J-M.: Advanced SiC fiber strain behavior during ion beam irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 314, 144148 (2013).CrossRefGoogle Scholar
Sauder, C. and Lamon, J.: Tensile creep behavior of SiC-based fibers with a low oxygen content. J. Am. Ceram. Soc. 90(4), 11461156 (2007).Google Scholar
Huguet-Garcia, J., Jankowiak, A., Miro, S., Gosset, D., Serruys, Y., and Costantini, J-M.: Study of the ion-irradiation behavior of advanced SiC fibers by Raman spectroscopy and transmission electron microscopy. J. Am. Ceram. Soc. 8(34503), 18 (2014).Google Scholar
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B 268(1112), 18181823 (2010).Google Scholar
Devanathan, R., Weber, W.J., and Gao, F.: Atomic scale simulation of defect production in irradiated 3C-SiC. J. Appl. Phys. 90(5), 2303 (2001).CrossRefGoogle Scholar
Zhang, Y., Varga, T., Ishimaru, M., Edmondson, P.D., Xue, H., Liu, P., Moll, S., Namavar, F., Hardiman, C., Shannon, S., and Weber, W.J.: Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 3343 (2014).CrossRefGoogle Scholar
Zhu, Z. and Jung, P.: Dimensional changes of Al2O3 and SiC, proton irradiated under tensile stress. J. Nucl. Mater. 212215, 10811086 (1994).CrossRefGoogle Scholar
Scholz, R. and Youngblood, G.E.: Irradiation creep of advanced silicon carbide fibers. J. Nucl. Mater. 283287, 372375 (2000).Google Scholar
Scholz, R., Mueller, R., and Lesueur, D.: Light ion irradiation creep of Textron SCS-6TM silicon carbide fibers. J. Nucl. Mater. 307311, 11831186 (2002).Google Scholar
Katoh, Y., Snead, L.L., and Golubov, S.I.: Analyzing irradiation-induced creep of silicon carbide. Mech. Prop. Perform. Eng. Ceram. Compos. III 28(2), 297305 (2007).Google Scholar
Zhu, S., Mizuno, M., Kagawa, Y., Cao, J., Nagano, Y., and Kaya, H.: Creep and fatigue behavior of SiC fiber reinforced SiC composite at high temperatures. Mater. Sci. Eng., A 225(12), 6977 (1997).CrossRefGoogle Scholar
Huguet-Garcia, J., Jankowiak, A., Miro, S., Serruys, Y., and Costantini, J.M.: Ion irradiation effects on third generation SiC fibers in elastic and inelastic energy loss regimes. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 9398 (2014).Google Scholar
Snead, L.L., Zinkle, S.J., Hay, J.C., and Osborne, M.C.: Amorphization of SiC under ion and neutron irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 141(14), 123132 (1998).Google Scholar
Weber, W.J., Yu, N., Wang, L.M., and Hess, N.J.: Temperature and dose dependence of ion-beam-induced amorphization in α-SiC. J. Nucl. Mater. 244(3), 258265 (1997).Google Scholar
Snead, L.L., Katoh, Y., and Nozawa, T.: Radiation effects in SiC and SiC-SiC. In Comprehensive Nuclear Materials, Elsevier, Amsterdam, Netherlands, 2012; pp. 215240.Google Scholar
Kerbiriou, X., Costantini, J-M., Sauzay, M., Sorieul, S., Thomé, L., Jagielski, J., and Grob, J-J.: Amorphization and dynamic annealing of hexagonal SiC upon heavy-ion irradiation: Effects on swelling and mechanical properties. J. Appl. Phys. 105(7), 073513 (2009).Google Scholar
Zang, H., Guo, D., Shen, T., He, C., Wang, Z., Pang, L., Yao, C., and Yang, T.: Investigation of swelling induced by heavy ion and neutron irradiation in SiC. J. Nucl. Mater. 433(13), 378381 (2013).Google Scholar
Snead, L.L., Katoh, Y., and Connery, S.: Swelling of SiC at intermediate and high irradiation temperatures. J. Nucl. Mater. 367370, 677684 (2007).Google Scholar
Audren, A., Monnet, I., Leconte, Y., Portier, X., Thomé, L., Levalois, M., Herlin-Boime, N., and Reynaud, C.: Structural evolution of SiC nanostructured and conventional ceramics under irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 266(1213), 28062809 (2008).CrossRefGoogle Scholar
Thomé, L., Debelle, A., Garrido, F., Mylonas, S., Décamps, B., Bachelet, C., Sattonnay, G., Moll, S., Pellegrino, S., Miro, S., Trocellier, P., Serruys, Y., Velisa, G., Grygiel, C., Monnet, I., Toulemonde, M., Simon, P., Jagielski, J., Jozwik-Biala, I., Nowicki, L., Behar, M., Weber, W.J., Zhang, Y., Backman, M., Nordlund, K., and Djurabekova, F.: Radiation effects in nuclear materials: Role of nuclear and electronic energy losses and their synergy. Nucl. Instrum. Methods Phys. Res., Sect. B 307, 4348 (2013).CrossRefGoogle Scholar
Backman, M., Toulemonde, M., Pakarinen, O.H., Juslin, N., Djurabekova, F., Nordlund, K., Debelle, A., and Weber, W.J.: Molecular dynamics simulations of swift heavy ion induced defect recovery in SiC. Comput. Mater. Sci. 67, 261265 (2013).CrossRefGoogle Scholar
Sorieul, S., Kerbiriou, X., Costantini, J-M., Gosmain, L., Calas, G., and Trautmann, C.: Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation. J. Phys.: Condens. Matter 24(12), 125801 (2012).Google Scholar
Mathews, J.R. and Finnis, M.W.: Irradiation creep models—An overview. J. Nucl. Mater. 159, 257285 (1988).CrossRefGoogle Scholar
Koyanagi, T., Shimoda, K., Kondo, S., Hinoki, T., Ozawa, K., and Katoh, Y.: Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences. J. Nucl. Mater. 455(13), 7380 (2014).Google Scholar
Trinkaus, H.: Local stress relaxation in thermal spikes as a possible cause for creep and macroscopic stress relaxation of amorphous solids under irradiation. J. Nucl. Mater. 223, 196201 (1995).CrossRefGoogle Scholar
Trinkaus, H.: Thermal spike model for irradiation creep of amorphous solids: Comparison to experimental data for ion irradiated vitreous silica. J. Nucl. Mater. 246(23), 244246 (1997).CrossRefGoogle Scholar
Dienst, W.: Irradiation induced creep of ceramic nuclear fuels. J. Nucl. Mater. 65, 18 (1977).Google Scholar