Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T21:07:57.445Z Has data issue: false hasContentIssue false

Heteroepitaxy and crystallographic orientation transition in La1.875Sr0.125NiO4 thin films on single crystal SrTiO3

Published online by Cambridge University Press:  14 May 2013

Adrian Podpirka*
Affiliation:
Department of Applied Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Viswanath Balakrishnan
Affiliation:
Department of Applied Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Shriram Ramanathan
Affiliation:
Department of Applied Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We investigate the orientation transition and strain relaxation in oxygenated epitaxial strontium-doped lanthanum nickelate, La1.875Sr0.125NiO4+δ (LSNO) thin films grown on single crystal strontium titanate, SrTiO3 (STO) substrates. Structural evolution has been studied as a function of film thickness by x-ray diffraction, pole figure analysis, and transmission electron microscopy (TEM). The LSNO layer grows epitaxial (OR1) with respect to the STO substrate with an orientation (001)OR1//(001)STO and <001>OR1//<001>STO. This orientation is maintained up to approximately 15 nm as observed from TEM, at which point it undergoes reorientation and lattice mismatch strain relaxation. The growth continues with a new orientation (OR2) as (100)OR2//(001)OR1 and with <100>OR2//<001>OR1 and <001>OR2//<001>OR1 with respect to the epitaxial LSNO layer. We consider possible mechanisms in detail leading to these phenomena given that the potassium nickel fluoride (K2NiF4)-structured lattice is able to accommodate excess oxygen interstitials and corresponding changes in the Ni valence state. By investigating the phase space of deposition parameters, we experimentally identify key factors leading to the reorientation phenomena.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tan, Z., Heald, S.M., Cheong, S-W., Cooper, A.S., and Moodenbaugh, A.R.: Nature of hole doping in Nd2NiO4 and La2NiO4: Comparison with La2CuO4. Phys. Rev. B 47, 12365 (1993).CrossRefGoogle ScholarPubMed
Choisnet, J., Evarestov, R.A., Tupitsin, I.I., and Veryazov, V.A.: The electronic structure and the chemical bonding in NiO and La2NiO4 crystals. A comparison with CuO and La2CuO4. Phys. Status Solidi B 179, 441 (1993).CrossRefGoogle Scholar
Podpirka, A. and Ramanathan, S.: Thin film colossal dielectric constant oxide La2-xSrxNiO4: Synthesis, dielectric relaxation measurements, and electrode effects. J. Appl. Phys. 109, 014106 (2011).CrossRefGoogle Scholar
Yamada, A., Suzuki, Y., Saka, K., Uehara, M., Mori, D., Kanno, R., Kiguchi, T., Mauvy, F., and Grenier, J-C.: Ruddlesden-popper-type epitaxial film as oxygen electrode for solid-oxide fuel cells. Adv. Mater. 20, 4124 (2008).CrossRefGoogle Scholar
Vashook, V.V., Trofimenko, N.E., Ullmann, H., and Makhnach, L.V.: Oxygen nonstoichiometry and some transport properties of LaSrNiO4-δ nickelate. Solid State Ionics 131, 329 (2000).CrossRefGoogle Scholar
Thompson, C.V. and Carel, R.: Stress and grain growth in thin films. J. Mech. Phys. Sol. 44, 657 (1996).CrossRefGoogle Scholar
Viswanath, B., Ko, C., and Ramanathan, S.: Thickness-dependent orientation evolution in nickel thin films grown on yttria-stabilized zirconia single crystals. Philos. Mag. 91, 4311 (2011).CrossRefGoogle Scholar
Freund, L.B. and Nix, W.D.: A critical thickness condition for a strained compliant substrate/epitaxial film system. Appl. Phys. Lett. 69, 173 (1996).CrossRefGoogle Scholar
Chroneos, A., Parfitt, D., Kilner, J.A., and Grimes, R.W.: Anisotropic oxygen diffusion in tetragonal La2NiO4+δ: Molecular dynamics calculations. J. Mater. Chem. 20, 266 (2010).CrossRefGoogle Scholar
Schroeder, M. and Dragan, M-A.: Oxygen transport in La2-xSrxNiO4+δ: Membrane permeation and defect chemical modelling. J. Mater. Sci. 42, 1972 (2007).CrossRefGoogle Scholar
Bassat, J.M., Gervais, F., Odier, P., and Loup, J.P.: Anisotropic transport properties of La2NiO4 single crystals. Mater. Sci. Eng., B 3, 507 (1989).CrossRefGoogle Scholar
Burriel, M., Garcia, G., Santiso, J., Kilner, J.A., Chater, R.J., and Skinner, S.J.: Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+δ. J. Mater. Chem. 18, 416 (2008).CrossRefGoogle Scholar
Santiso, J. and Burriel, M.: Deposition and characterisation of epitaxial oxide thin films for SOFCs. J. Solid State Electrochem. 15, 985 (2011).CrossRefGoogle Scholar
Arrouy, F., Locquet, J-P., Williams, E-J., Machler, E., Berger, R., Gerber, C., Monroux, C., Grenier, J.C., and Wattiaux, A.: Growth, microstructure, and electrochemical oxidation of MBE-grown c-axis La2CuO4 thin films. Phys. Rev. B 54, 7512 (1996).CrossRefGoogle ScholarPubMed
JCPDS Data #01-089-8308, #01-070-9274.Google Scholar
Momma, K. and Izumi, F.: VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 44, 1272 (2011).CrossRefGoogle Scholar
Thompson, C.V. and Carel, R.: Texture development in polycrystalline thin film. Mater. Sci. Eng., B 32, 211 (1995).CrossRefGoogle Scholar
Oh, U.C., Je, J.H., and Lee, J.Y.: Two critical thicknesses in the preferred orientation of TiN thin films. J. Mater. Res. 13, 1225 (1998).CrossRefGoogle Scholar
Oh, U.C. and Je, J.H.: Effects of strain energy on the preferred orientation of TiN thin films. J. Appl. Phys. 74, 1692 (1993).CrossRefGoogle Scholar
Telesca, D., Wells, B.O., and Sinkovic, B.: Structural reorientation of PLD grown La2NiO4 thin films. Surf. Sci. 606, 865 (2012).CrossRefGoogle Scholar
Podpirka, A., Tselev, A., and Ramanathan, S.: Synthesis and frequency-dependent dielectric properties of epitaxial La1.875Sr0.125NiO4 thin films. J. Phys. D: Appl. Phys. 45 305302 (2012).CrossRefGoogle Scholar
Xie, C.K., Budnick, J.I., Hines, W.A., Wells, B.O., He, F., and Moodenbaugh, A.R.: Direct evidence for the suppression of charge stripes in epitaxial La1.67Sr0.33NiO4. Phys. Rev. B 77 201403 (2008).CrossRefGoogle Scholar
Lu, Y.M., Hwang, W.S., Liu, W.Y., and Yang, J.S.: Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering. Mater. Chem. Phys. 72, 269 (2001).CrossRefGoogle Scholar
Singh, P. and Kaur, D.: Room temperature growth of nanocrystalline anatase TiO2 thin films by dc magnetron sputtering. Physica B 405, 1258 (2010).CrossRefGoogle Scholar
Yu, Z., Yan, C., Huang, T., Huang, W., Yan, Y., Xhang, Y., Liu, L., Zhang, Y., and Zhao, Y.: Influence of sputtering power on composition, structure and electrical properties of RF sputtered CuIn1-xGaxSe2 thin films. Appl. Surf. Sci. 258, 5222 (2012).CrossRefGoogle Scholar
Kim, J-H., Lee, J-H., Heo, Y-W., Kim, J-J., and Park, J-O.: Effects of oxygen partial pressure on the preferential orientation and surface morphology of ITO films grown by RF magnetron sputtering. J. Electroceram. 23, 169 (2009).CrossRefGoogle Scholar
Narayana Reddy, P., Sreedhar, A., Reddy, M.H.P., Uthanna, S., and Pierson, J.F.: The effect of oxygen partial pressure on physical properties of nano-crystalline silver oxide thin films deposited by RF magnetron sputtering. Cryst. Res. Technol. 46, 961 (2011).CrossRefGoogle Scholar
Beltran, M., Dominguez, J.M., Montoya, A., Tavizon, G., Vincente, L., and Viveros, T.: Synthesis, characterization and catalytic properties of La2-xSrxNiO4-δ. Catal. Lett. 15, 199 (1992).CrossRefGoogle Scholar
Sayer, M. and Odier, P.: Electrical properties and stoichiometry in La2NiO4. J. Solid State Chem. 67, 26 (1987).CrossRefGoogle Scholar
Prabhakaran, D., Isla, P., and Boothroyd, A.T.: Growth of large La2-xSrxNiO4+δ single crystals by the floating-zone technique. J. Cryst. Growth 237, 815 (2002).CrossRefGoogle Scholar
Howard, C.J., Kennedy, B.J., and Chakoumakos, B.C.: Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition. J. Phys. Condens. Matter 12, 349 (2000).CrossRefGoogle Scholar
Kim, C.H., Jang, J.W., Cho, S.Y., Kim, I.T., and Hong, K.S.: Ferroelastic twins in LaAlO3 polycrystals. Physica B 262, 438 (1999).CrossRefGoogle Scholar
Houben, L.: Aberration-corrected HRTEM of defects in strained La2CuO4 thin films grown on SrTiO3. J. Mater. Sci. 41, 4413 (2006).CrossRefGoogle Scholar
Wakiya, H., Kuroyanagi, K., Xuan, Y., Shinozaki, K., and Mizutani, N.: Nucleation and growth behavior of epitaxial Pb(Zr, Ti)O3/MgO3 (100) observed by atomic force microscopy. Thin Solid Films 357, 166 (1999).CrossRefGoogle Scholar
Podpirka, A. and Ramanathan, S.: Heteroepitaxial La2-xSrxNiO4 – Nb: Doped SrTiO3 junctions: Synthesis and rectification characteristics. J. Electrochem. Soc. 159, H72 (2012).CrossRefGoogle Scholar
Mauvy, F., Bassat, J-M., Boehm, E., Manaud, J-P., Dordor, P., and Grenier, J-C.: Oxygen electrode reaction on Nd2NiO4+δ cathode materials impedance spectroscopy study. Solid State Ionics 158, 17 (2003).CrossRefGoogle Scholar
Kharton, V.V., Viskup, A.P., Kovalevsky, A.V., Naumovich, E.N., and Marques, F.M.B.: Ionic transport in oxygen hyperstoichiometric phases with K2NiF4-type structure. Solid State Ionics 143, 337353 (2001).CrossRefGoogle Scholar
Naumovich, E.N. and Kharton, V.V.: Atomic-scale insight into the oxygen ionic transport mechanisms in La2NiO4-based materials. J. Mol. Struct. THEOCHEM 946, 57 (2010).CrossRefGoogle Scholar
Frayret, C., Villesuzanne, A., and Pouchard, M.: Application of density functional theory to the modeling of the mixed ionic and electronic conductor La2NiO4+δ: Lattice relaxation, oxygen mobility and energetics of frenkel defects. Chem. Mater. 17, 6538 (2005).CrossRefGoogle Scholar
Hücker, M., Chung, K., Chand, M., Vogt, T., Tranquada, J.M., and Buttrey, D.J. :Oxygen and strontium codoping of La2NiO4: Room-temperature phase diagrams. Phys. Rev. B 70, 064105 (2004).CrossRefGoogle Scholar
Yang, L., Wang, G., Mao, C., Zhang, Y., Liang, R., Soyer, C., Remiens, D., and Dong, X.: Orientation control of LaNiO3 thin films by RF magnetron sputtering with different oxygen partial pressure. J. Cryst. Growth 311, 4241 (2009).CrossRefGoogle Scholar
Tsubouchi, K., Ohkubo, I., Kumigashira, H., Matsumoto, Y., Ohnishi, T., Lippmaa, M., Koinuma, H., and Oshima, M.: Epitaxial growth and surface metallic nature of LaNiO3 thin films. Appl. Phys. Lett. 92, 262109 (2008).CrossRefGoogle Scholar
Ha, S.D., Otaki, M., Jaramillo, R., Podpirka, A., and Ramanathan, S.: Stable metal-insulator transition in epitaxial SmNiO3 thin films. J. Solid State Chem. 190, 233 (2012).CrossRefGoogle Scholar
Read, M.S.D., Islam, M.S., Watson, G.W., and Hancock, F.E.: Surface structures and defect properties of pure and doped La2NiO4. J. Mater. Chem. 11, 2597 (2001).CrossRefGoogle Scholar
Aguadero, A., Escudero, M.J., Perez, M., Alonso, J.A., Pomjakushin, V., and Daza, L.: Effect of Sr content on the crystal structure and electrical properties of the system La2-xSrxNiO4+δ (0≤x≤1). Dalton Trans. 36, 4377 (2006).CrossRefGoogle Scholar
Kawashima, J., Yamada, Y., and Hirabayashi, I.: Critical thickness and effective thermal expansion coefficient of YBCO crystalline film. Physica C 306, 114 (1998).CrossRefGoogle Scholar