Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:11:28.709Z Has data issue: false hasContentIssue false

Growth and characterization of (Bi, Pb)2Sr2Ca2Cu3Oxsingle crystals

Published online by Cambridge University Press:  31 January 2011

Shaoyan Chu
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Michael E. McHenry
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Get access

Abstract

(Bi, Pb)2Sr2Ca2Cu3Ox (2223) single crystals have been grown using a fused-salt reaction of Bi2O3, PbO, SrCl2, CaCl2, CuCl, and KNO3 in a KCl flux. The pristine crystals show regular plate-like morphology with typical dimension of 0.1 × 0.1 × 0.001–0.01 mm3. Crystal orientation, chemical composition, phase purity, and superconductivity of the pristine crystals were determined by SEM, TEM, EDX, x-ray diffraction techniques, and SQUID magnetometry. The relative fraction of the Bi-2223 phase (Tc = 110 K) in as-grown crystals is ~97%. The only impurity phase, Bi-2212, occurs in some selected crystals but is present in amounts less than the detection limit of x-ray diffraction and is unobserved in the diamagnetic signal determined by SQUID magnetometry.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wanklyn, B., Dieguez, E., Changkang, Chen, Pradhan, A. K., Hodby, J. W., Yongle, Hu, Smith, D., and Wondre, F., J. Cryst. Growth 128, 738 (1993).CrossRefGoogle Scholar
2.Ha, D-H., Oka, K., Iga, F., and Nishihara, Y., Jpn. J. Appl. Phys. 32, L778 (1993).CrossRefGoogle Scholar
3.Schneemeyer, L. F., van Dover, R. B., Glarum, S. H., Sunshine, S. A., Fleming, R. M., Batlogg, B., Siegrist, T., Marshall, J. H., Waszczak, J. V., and Rupp, L. W., Nature (London) 332, 422 (1988).Google Scholar
4.Jayavael, R., Murugakoothan, P., Rao, C. R. Venkateswara, Subramanian, C., and Ramasamy, P., Super Cond. Sci. Technol. 6, 349 (1993).Google Scholar
5.Matsubara, I., Ogura, T., Tanigawa, H., Yamashita, H., and Kinoshita, M., J. Cryst. Growth 110, 973 (1991).CrossRefGoogle Scholar
6.Hamed, F., Gygax, S., Curzon, A. E., and Denhoff, M., J. Cryst. Growth 152, 280 (1995).CrossRefGoogle Scholar
7.Matsubara, I., Yamashita, H., and Kawai, T., J. Cryst. Growth 128, 719 (1993).CrossRefGoogle Scholar
8.Matsubara, I., Funahashi, R., Ueno, K., Yamashita, H., and Kawai, T., Physica C 256, 33 (1996).CrossRefGoogle Scholar
9.Matsubara, I., Tanigawa, H., Ogura, T., Yamashita, H., Kinoshita, M., and Kawai, T., Jpn. J. Appl. Phys. 28, L1358 (1989).CrossRefGoogle Scholar
10.Li, Qiang, Suenaga, M., Hikata, T., and Sato, K., Phys. Rev. B 46, 5957 (1992).Google Scholar
11.Li, Qiang, Suenaga, M., Gohng, Junho, Finnemore, D. K., Hikata, T., and Sato, K., Phys. Rev. B 46, 3195 (1992).CrossRefGoogle Scholar
12.Cho, J. H., Johnston, D. C., Ledvij, M., and Kogan, V. G., Physica C 212, 419 (1993).Google Scholar
13.Chu, S., Wang, X., Cheng, X., Wang, J., and Chu, S., Eng. Chem. Met. 13, 211 (1992).Google Scholar
14.Chu, S., Wang, X., Cheng, X., Wang, J., Li, C., and Wu, Qianzhang, Beijing International Conference on High T cSuperconductivity, May 25–29 1992, Beijing, China, M118.Google Scholar
15.Chu, S., Ph.D. Thesis, Beijing University of Aeronautics and Astronautics (1991).Google Scholar
16.Wu, Q., Fu, Z., Zhang, A., Huang, J., Tang, D., Yao, P., Chu, S., Yi, S., Rong, X., Zhang, A., and Cheng, X., J. Appl. Phys. 71, 2772 (1992).CrossRefGoogle Scholar
17.Cheethan, A. K. and Chippindale, A. M., Chemistry of Superconductor Materials, edited by Vanderah, T. A. (Park Ridge, NJ, 1991).Google Scholar
18.Yamaguchi, Y., Aoki, N., Iga, F., and Nishihara, Y., Physica C 246, 216 (1995).Google Scholar
19.Iga, F., Grover, A. K., Yamaguchi, Y., Nishihara, Y., Goyal, N., and Bhat, S. V., Phys. Rev. B 51, 8521 (1995).CrossRefGoogle Scholar
20.McHenry, M. E. and Sutton, R. A., Prog. Mat. Sci. 38, 159 (1994).CrossRefGoogle Scholar
21.Bean, C. P., Phys. Rev. Lett. 8, 250 (1962); Rev. Mod. Phys. 36, 31 (1964).CrossRefGoogle Scholar
22.Chu, S. and McHenry, M. E., 96 Applied Superconductivity Conference at Pittsburgh, PA, MBB1.Google Scholar
23.Zeidov, E., Majer, D., Konozykowski, M., Geshkenbein, V. B., Vinokur, V. M., and Shtrikman, H., Nature (London) 375, 373 (1995).Google Scholar
24.Liang, R., Bonn, D. A., and Hardy, W. N., Phys. Rev. Lett. 76, 835 (1996).CrossRefGoogle Scholar
25.Pastoriza, H., Goffman, M. F., Arribere, A., and de la Cruz, F., Phys. Rev. Lett. 72, 2951 (1994).Google Scholar
26.Lee, J-W., Lessure, H. S., Laughling, D. E., McHenry, M. E., Sankar, S. G., Willis, J. O., Cost, J. R., and Maley, M. P., Appl. Phys. Lett. 57, 2150 (1990).CrossRefGoogle Scholar
27.Lessure, H. S., Simizu, S., Baumert, B. A., Sankar, S. G., McHenry, M. E., Maley, M. P., Cost, J. R., and Willis, J. O., IEEE Trans. Mag., 942 (1991).CrossRefGoogle Scholar