Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T17:00:02.505Z Has data issue: false hasContentIssue false

Fractal character of crack propagation in epoxy and epoxy composites as revealed by photon emission during fracture

Published online by Cambridge University Press:  31 January 2011

Ma Zhenyi
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
S.C. Langford
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
J.T. Dickinson
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
M.H. Engelhard
Affiliation:
Molecular Science Research Center, Pacific Northwest Laboratories, Richland, Washington 99352
D.R. Baer
Affiliation:
Molecular Science Research Center, Pacific Northwest Laboratories, Richland, Washington 99352
Get access

Abstract

We examine the photon emission accompanying rapid crack growth in an unfilled epoxy resin and in the same resin filled with alumina particles. The alumina particles substantially increase the toughness of the material and increase the photon emission intensities at least tenfold. We attribute the increased photon emission in the filled material to high densities of broken bonds near the alumina particles. The photon emission signals from both filled and unfilled materials show nonintegral (fractal) dimensions which are insensitive to the presence of the particles at the level of precision employed. Fractal dimension measurements of the fracture surfaces are likewise relatively insensitive to the presence of the filler, despite marked variations in apparent surface roughness. The photon emission signals were examined for the presence of chaos. Computations of the correlation exponent of Grassberger and Procaccia indicate that the photon emission fluctuations are not noise-like in character, and suggest deterministic chaos. Lyapunov exponent estimates on photon emission signals confirm the presence of chaotic processes. X-ray photoelectron spectroscopy and electron microscopy of the fracture surface indicate very little interfacial failure; i.e., fracture proceeds predominantly through the epoxy matrix in both filled and unfilled materials. Consequently, the character of the polymer matrix dominates the fracture process and therefore determines the fractal nature of the surface and the chaotic nature of the photon emission intensities in each material.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dickinson, J. T., Jensen, L. C., and Bhattacharya, S., Die Makro-molekulare Chemie: Macromolecular Symposia 7, 129 (1987).Google Scholar
2Langford, S. C., Zhenyi, Ma, and Dickinson, J. T., J. Mater. Res. 4, 1272 (1989).CrossRefGoogle Scholar
3Goldberger, A. L., Rigney, D. R., and West, B. J., Sci. Am. 262, 42 (1990).CrossRefGoogle Scholar
4Mandelbrot, B. B., Passoja, D. E., and Paullay, A. J., Nature 308, 721 (1984).CrossRefGoogle Scholar
5Mecholsky, J. J., Passoja, D. E., and Feinberg-Ringel, K. S., J. Am. Ceram. Soc. 72, 60 (1989).CrossRefGoogle Scholar
6Moloney, A. C., Kausch, H. H., and Stieger, H. R., J. Mater. Sci. 18, 208 (1983).CrossRefGoogle Scholar
7Dickinson, J. T., Proceedings of the ACS Division of Polymeric Materials: Science and Engineering 56, 264 (1987).Google Scholar
8Dickinson, J. T. and Crasto, A. S., in Cross-linked Polymers: Chemistry, Properties and Applications, edited by Dickie, R. A., Labana, S. S., and Bauer, R. S., ACS Symposium Series 367 (American Chemical Society, Washington, DC, 1988), pp. 145168.CrossRefGoogle Scholar
9Dickinson, J. T. and Jensen, L. C., Proceedings of the International Society for Optical Engineering (SPIE): Fluorescence Detection I 743, 68 (1987).Google Scholar
10Dickinson, J. T., Jensen, L. C., and Jahan-Latibari, A., J. Vac. Sci. Technol. A 2, 1112 (1984).CrossRefGoogle Scholar
11Moloney, A. C., Kausch, H. H., Kaiser, T., and Beer, H. R., J. Mater. Sci. 22, 381 (1987).CrossRefGoogle Scholar
12Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, W. H., New York, 1983).CrossRefGoogle Scholar
13Mandelbrot, B. B., Physica Scripta 32, 257 (1985).CrossRefGoogle Scholar
14Mandelbrot, B. B. and Voss, R. F., in Noise in Physical Systems and 1/f Noise, edited by Savelli, M., Lecoy, G., and Nougier, J-P. (El-sevier Science Publishers, Amsterdam, 1983), p. 31.Google Scholar
15Langford, S. C., Zhenyi, Ma, Jensen, L. C., and Dickinson, J. T., J. Vac. Sci. Technol. A 8, 3470 (1990).CrossRefGoogle Scholar
16Meakin, Paul, in Phase Transitions and Critical Phenomena, edited by Domb, C. and Lebowitz, J. L. (Academic Press, London, 1988), Vol. 12, p. 335.Google Scholar
17Dubuc, B., Quiniou, J. F., Roques-Carmes, C., Tricot, C., and Zucker, S. W., Phys. Rev. A 39, 1500 (1989).CrossRefGoogle Scholar
18Packard, N. H., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S., Phys. Rev. Lett. 45, 712 (1980).CrossRefGoogle Scholar
19Peter Grassberger and Itamar Procaccia, Physica 9D, 189 (1983).Google Scholar
20Schuster, H. G., Deterministic Chaos (VCH Verlagsgesellschaft, Weinheim, FRG, 1988).Google Scholar
21Ben-Mizrachi, Avraham and Procaccia, Itamar, Phys. Rev. A 29, 975 (1984).CrossRefGoogle Scholar
22Shaw, R. S., The Dripping Faucet as a Model Chaotic System (Aerial Press, Santa Cruz, CA, 1984).Google Scholar
23Wolf, Alan, Swift, J. B., Swinney, H. L., and Vastano, J. A., Physica 16D, 285 (1985).Google Scholar
24Dickinson, J. T., “Fracto-emission from adhesive failure,” to appear in Adhesive Bonding, edited by Lee, L. H. (Plenum Publishers, New York, 1990).Google Scholar
25Huang, Z. H., Tian, J. F., and Wang, Z. G., Scripta Metall. Mater. 24, 967 (1990).CrossRefGoogle Scholar
26Lung, C. W. and Mu, Z. Q., Phys. Rev. B 38, 11781 (1988).CrossRefGoogle Scholar
27Williford, R. E., Scripta Metall. 22 (11), 17491754 (1988).CrossRefGoogle Scholar
28Yves Termonia and Paul Meakin, Nature 320, 429 (1986).Google Scholar
29Louis, E. and Guinea, F., Europhys. Lett. 3, 871 (1987).CrossRefGoogle Scholar
30Blunt, M. J. and King, P. R., Phys. Rev. A37, 3935 (1988).CrossRefGoogle Scholar
31Chu, Benjamin, Wu, Chi, Wu, Danqing, and Phillips, J. C., Macro-molecules 20, 2642 (1987).CrossRefGoogle Scholar
32Wu, Wenli, Bauer, B. J., and Su, Weijie, Polymer 30, 13841388 (1989).CrossRefGoogle Scholar