Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T14:44:38.306Z Has data issue: false hasContentIssue false

Following crack path selection in multifilm structures with weak and strong interfaces by in situ 4-point-bending

Published online by Cambridge University Press:  13 April 2015

Bernhard Völker
Affiliation:
KAI - Kompetenzzentrum Automobil- und Industrieelektronik GmbH, 9524 Villach, Austria; and Department Materials Physics, Montanuniversität Leoben, 8700 Leoben, Austria
Sriram Venkatesan
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
Walther Heinz
Affiliation:
KAI - Kompetenzzentrum Automobil- und Industrieelektronik GmbH, 9524 Villach, Austria
Kurt Matoy
Affiliation:
Infineon Technologies AG, 9500 Villach, Austria
Roman Roth
Affiliation:
Infineon Technologies AG, 9500 Villach, Austria
Jörg-Martin Batke
Affiliation:
Infineon Technologies AG, 93049 Regensburg, Germany
Megan J. Cordill
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, 8700 Leoben, Austria
Gerhard Dehm*
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this study, the interfacial adhesion of Cu and TiN on an annealed borophosphosilicate glass (BPSG) in a multilayer material stack was investigated. The two material systems, Cu/BPSG and TiN/BPSG, are representatives for weak and strong interfaces, respectively. A weak and a strong interface was chosen to identify possible differences in the fracture path selection for the multilayer material systems. To investigate this, in situ 4-point-bending experiments were performed under an optical microscope and in a scanning electron microscope. Complementary ex situ 4-point-bending experiments were carried out on the identical material systems. These tests revealed that for the two analyzed systems there is a large discrepancy in the success rate of failure along the interface of interest, which is a prerequisite for determining the corresponding interface energy release rate. This phenomenon can be understood by using theoretical findings of earlier studies reported in the literature, which are in agreement with the experimental outcome of the in situ 4-point-bending measurements presented here.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Varchenya, S., Simanovskis, A., and Stolyarova, S.: Adhesion of thin metallic films to non-metallic substrates. Thin Solid Films 164, 147 (1988).CrossRefGoogle Scholar
Kinbara, A., Baba, S., Kikuchi, A., Kajiwara, T., and Watanabe, K.: Adhesion measurement of thin films on glass substrates. Thin Solid Films 171, 93 (1989).Google Scholar
Volinsky, A.A., Moody, N.R., and Gerberich, W.W.: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50, 441 (2002).Google Scholar
Marshall, D.B. and Evans, A.G.: Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination. J. Appl. Phys. 56, 2632 (1984).CrossRefGoogle Scholar
Kriese, M.D., Gerberich, W.W., and Moody, N.R.: Quantitative adhesion measures of multilayer films: Part I. Indentation mechanics. J. Mater. Res. 14, 3007 (1999).CrossRefGoogle Scholar
Kriese, M.D., Gerberich, W.W., and Moody, N.R.: Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W. J. Mater. Res. 14, 3019 (1999).Google Scholar
Cordill, M.J., Moody, N.R., and Bahr, D.F.: Quantifying improvements in adhesion of platinum films on brittle substrates. J. Mater. Res. 19, 1818 (2004).CrossRefGoogle Scholar
Cordill, M.J., Moody, N.R., and Bahr, D.F.: The effects of plasticity on adhesion of hard films on ductile interlayers. Acta Mater. 53, 2555 (2005).Google Scholar
Barthel, E., Kerjan, O., Nael, P., and Nadaud, N.: Asymmetric silver to oxide adhesion in multilayers deposited on glass by sputtering. Thin Solid Films 473, 272 (2005).Google Scholar
Hirakata, H., Takahashi, Y., Truong, D., and Kitamura, T.: Role of plasticity on interface crack initiation from a free edge and propagation in a nano-component. Int. J. Fract. 145, 261 (2007).Google Scholar
Matoy, K., Detzel, T., Müller, M., Motz, C., and Dehm, G.: Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surf. Coat. Technol. 204, 878 (2009).CrossRefGoogle Scholar
Schaufler, J., Schmid, C., Durst, K., and Göken, M.: Determination of the interfacial strength and fracture toughness of a-C:H coatings by in situ microcantilever bending. Thin Solid Films 522, 480 (2012).Google Scholar
Charalambides, P.G., Lund, J., Evans, A.G., and McMeeking, R.M.: Test specimen for determining the fracture resistance of bimaterial interfaces. J. Appl. Mech. 56, 77 (1989).Google Scholar
Ma, Q., Fujimoto, H., Flinn, P., Jain, V., Adibi-Rizi, F., Moghadam, F., and Dauskardt, R.H.: Quantitative measurement of interface fracture. In Materials Reliability in Microelectronics V. Materials Research Society Symposia Proceedings, San Francisco, CA, Vol. 391, Filter, W.F., Gadepally, K., Greer, A.L., Oates, A.S., and Rosenberg, R. eds. (Cambridge University Press, 1995); p. 91.Google Scholar
Dauskardt, R.H., Lane, M., Ma, Q., and Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141 (1998).Google Scholar
Ma, Q., Bumgarner, J., Fujimoto, H., Lane, M., and Dauskardt, R.H.: Adhesion measurement of interfaces in multilayer interconnect structures. In Materials Reliability in Microelectronics VII. Materials Research Society Symposia Proceedings, San Francisco, CA, Vol. 473, Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.D. Jr., and Suo, Z. eds.; 1997; p. 3.Google Scholar
Lane, M., Dauskardt, R.H., Krishna, N., and Hashim, I.: Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. J. Mater. Res. 15, 203 (2000).Google Scholar
Cui, Z., Dixit, G., Xia, L., Demos, A., Kim, B.H., Witty, D., M’Saad, H., and Dauskardt, R.H.: Benchmarking four point bend adhesion testing: The effect of test parameters on adhesion energy. In Characterization and Metrology for ULSI Technology. AIP Conference Proceedings, Santa Clara, CA, Vol. 788, Seiler, D.G., Diebold, A.C., McDonald, R., Ayre, C.R., Khosla, R.P., Zollner, S., and Secula, E.M. eds.; 2005; p. 507.Google Scholar
Shaviv, R., Roham, S., and Woytowitz, P.: Optimizing the precision of the four-point bend test for the measurement of thin film adhesion. Microelectron. Eng. 82, 99 (2005).CrossRefGoogle Scholar
Birringer, R.P., Chidester, P.J., and Dauskardt, R.H.: High yield four-point bend thin film adhesion testing techniques. Eng. Fract. Mech. 78, 2390 (2011).Google Scholar
Kriese, M.D., Moody, N.R., and Gerberich, W.W.: Effects of annealing and interlayers on the adhesion energy of copper thin films to SiO2/Si substrates. Acta Mater. 46, 6623 (1998).CrossRefGoogle Scholar
Hohenwarter, A. and Pippan, R.: A comprehensive study on the damage tolerance of ultrafine-grained copper. Mater. Sci. Eng., A 540, 89 (2012).Google Scholar
Kamiya, S., Nagasawa, H., Yamanobe, K., and Saka, M.: A comparative study of the mechanical strength of chemical vapor-deposited diamond and physical vapor-deposited hard coatings. Thin Solid Films 473, 123 (2005).Google Scholar
Massl, S., Thomma, W., Keckes, J., and Pippan, R.: Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique. Acta Mater. 57, 1768 (2009).Google Scholar
He, M-Y. and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25, 1053 (1989).Google Scholar
He, M-Y. and Hutchinson, J.W.: Kinking of a crack out of an interface. J. Appl. Mech. 56, 270 (1989).CrossRefGoogle Scholar
Suo, Z. and Hutchinson, J.W.: Interface crack between two elastic layers. Int. J. Fract. 43, 1 (1990).Google Scholar
Banks-Sills, L. and Ashkenazi, D.: A note on fracture criteria for interface fracture. Int. J. Fract. 103, 177 (2000).Google Scholar
Suo, Z. and Hutchinson, J.W.: Sandwich test specimens for measuring interface crack toughness. Mater. Sci. Eng., A 107, 135 (1989).Google Scholar
Völker, B., Heinz, W., Matoy, K., Roth, R., Batke, J.M., Schöberl, T., Scheu, C., and Dehm, G.: Interface fracture and chemistry of a tungsten-based metallization on borophosphosilicate glass. Philos. Mag. (2014, in press). DOI: 10.1080/14786435.2014.913108.Google Scholar
Wortman, J.J. and Evans, R.A.: Young’s modulus, Shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).Google Scholar
Tran, H.T., Shirangi, M.H., Pang, X., and Volinsky, A.A.: Temperature, moisture and mode-mixity effects on copper leadframe/EMC interfacial fracture toughness. Int. J. Fract. 185, 115 (2014).Google Scholar
Hsueh, C.H., Tuan, W.H., and Wei, W.C.J.: Analyses of steady-state interface fracture of elastic multilayered beams under four-point bending. Scr. Mater. 60, 721 (2009).Google Scholar