Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T08:13:23.487Z Has data issue: false hasContentIssue false

Fatigue of self-healing hierarchical soft nanomaterials: The case study of the tendon in sportsmen

Published online by Cambridge University Press:  16 December 2014

Federico Bosia
Affiliation:
Department of Physics and “Nanostructured Interfaces and Surfaces” Interdepartmental Centre, Università di Torino, Torino 10125, Italy
Matthew Merlino
Affiliation:
Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Nicola M. Pugno*
Affiliation:
Laboratory of Bio-Inspired & Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, Università di Trento, Trento I-38123, Italy; Center for Materials and Microsystems, Fondazione Bruno Kessler, Povo (Trento) I-38123, Italy; and School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

One of the defining properties of biological structural materials is self-healing, i.e., the ability to undergo long-term reparation after instantaneous damaging events, but also after microdamage due to repeated load cycling. To correctly model the fatigue life of such materials, self-healing must be included in fracture and fatigue laws, and related codes. Here, we adopt a numerical modelization of fatigue cycling of self-healing biological materials based on the hierarchical fiber bundle model and propose modifications in Griffith's and Paris' laws to account for the presence of self-healing. Simulations allow us to numerically verify these modified expressions and highlight the effect of the self-healing rate, in particular, for collagen-based materials such as human tendons and ligaments. The study highlights the effectiveness of the self healing process even for small healing rates and provides the possibility of improving the reliability of predictions of fatigue life in biomechanics, e.g., in sports medicine.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meyers, M.A., Chen, P-Y., Lin, A.Y-M., and Seki, Y.: Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53(1), 1 (2008).CrossRefGoogle Scholar
Winkelstein, B.A.: Orthopaedic Biomechanics (CRC Press, Boca Raton, FL, 2013).Google Scholar
Meyers, M.A., McKittrick, J., and Chen, P-Y.: Structural biological materials: Critical mechanics-materials connections. Science 339(6121), 773 (2013).Google Scholar
White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., and Viswanathan, S.: Autonomic healing of polymer composites. Nature 409(6822), 794 (2001).CrossRefGoogle ScholarPubMed
Sahni, V., Harris, J., Blackledge, T.A., and Dhinojwala, A.: Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat. Commun. 3, 1106 (2012).Google Scholar
Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J.S., and White, S.R.: Self-healing materials with microvascular networks. Nat. Mater. 6(8), 581 (2007).Google Scholar
Hansen, C.J., Wu, W., Toohey, K.S., Sottos, N.R., White, S.R., and Lewis, J.A.: Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 21(41), 4143 (2009).Google Scholar
Brown, E.N., White, S.R., and Sottos, N.R.: Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing. Compos. Sci. Technol. 65(15–16), 2474 (2005).Google Scholar
Cordier, P., Tournilhac, F., Soulie-Ziakovic, C., and Leibler, L.: Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181), 977 (2008).Google Scholar
Brown, E.N., White, S.R., and Sottos, N.R.: Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part I: Manual infiltration. Compos. Sci. Technolo. 65(15–16), 2466 (2005).Google Scholar
Jones, A.S., Rule, J.D., Moore, J.S., Sottos, N.R., and White, S.R.: Life extension of self-healing polymers with rapidly growing fatigue cracks. J. R. Soc., Interface 4(13), 395 (2007).Google Scholar
Murphy, E.B. and Wudl, F.: The world of smart healable materials. Prog. Polym. Sci. 35(1–2), 223 (2010).Google Scholar
BaLazs, A.C.: Modelling self-healing materials. Mater. Today 10(9), 18 (2007).Google Scholar
Gautieri, A., Vesentini, S., Redaelli, A., and Buehler, M.J.: Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11(2), 757 (2011).Google Scholar
Pradhan, S., Hansen, A., and Chakrabarti, B.K.: Failure processes in elastic fiber bundles. Rev. Mod. Phys. 82(1), 499 (2010).CrossRefGoogle Scholar
Pugno, N.M., Bosia, F., and Carpinteri, A.: Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables. Small 4(8), 1044 (2008).Google Scholar
Bosia, F., Abdalrahman, T., and Pugno, N.M.: Investigating the role of hierarchy on the strength of composite materials: Evidence of a crucial synergy between hierarchy and material mixing. Nanoscale 4(4), 1200 (2012).Google Scholar
Bosia, F., Abdalrahman, T., and Pugno, N.M.: Self-healing of hierarchical materials. Langmuir 30(4), 1123 (2014).Google Scholar
Schechtman, H. and Bader, D.L.: In vitro fatigue of human tendons. J. Biomech. 30(8), 829 (1997).Google Scholar
Schechtman, H. and Bader, D.L.: Fatigue damage of human tendons. J. Biomech. 35(3), 347 (2002).Google Scholar
Wren, T.A.L., Yerby, S.A., Beaupré, G.S., and Carter, D.R.: Mechanical properties of the human achilles tendon. Clin. Biomech. 16(3), 245 (2001).Google Scholar
Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications, 3rd ed. (Taylor & Francis, Boca Raton, FL, 2005).Google Scholar
Pugno, N., Carpinteri, A., Ippolito, M., Mattoni, A., and Colombo, L.: Atomistic fracture: QFM vs. MD. Eng. Fract. Mech. 75(7), 1794 (2008).Google Scholar
Paris, M.G.P.C. and Anderson, W.E.: A rational analytic theory of fatigue. Trend Eng. 13, 9 (1961).Google Scholar
Pugno, N., Cornetti, P., and Carpinteri, A.: New unified laws in fatigue: From the Wohler's to the Paris' regime. Eng. Fract. Mech. 74(4), 595 (2007).Google Scholar
Pugno, N., Ciavarella, M., Cornetti, P., and Carpinteri, A.: A generalized Paris' law for fatigue crack growth. J. Mech. Phys. Solids 54, 13331349 (2006).Google Scholar
Lakes, R.: Materials with structural hierarchy. Nature 361(6412), 511 (1993).Google Scholar
Fratzl, P. and Weinkamer, R.: Nature's hierarchical materials. Prog. Mater. Sci. 52(8), 1263 (2007).Google Scholar
Weibull, W.: A Statistical Theory of the Strength of Materials, Ingeniörsvetenskapsakademiens Handlingar Nr 151, 1939 (Generalstabens Litografiska Anstalts Förlag, Stockholm).Google Scholar
Nalla, R.K., Kruzic, J.J., Kinney, J.H., and Ritchie, R.O.: Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth. Biomaterials 26, 21832195 (2005).CrossRefGoogle ScholarPubMed
Mach, K.J., Hale, B.B., Denny, M.W., and Nelson, D.V.: Death by small forces: a fracture and fatigue analysis of wave-swept macroalgae. J. of Exp. Biology 210, 22312243.Google Scholar
Fratzl, P.: Collagen: Structure and Mechanics (Springer, 2008).Google Scholar