Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T06:28:36.742Z Has data issue: false hasContentIssue false

Fabrication of undoped near-monophase Ba2Ti9O20 via rapid thermal processing

Published online by Cambridge University Press:  31 January 2011

Wen-yi Lin
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0245
Robert F. Speyer
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0245
Get access

Abstract

Rapid thermal processing of BaTiO3 and TiO2 pressed powders at 500 °C/min to 1250 °C for 2 h in an infrared furnace resulted in a mixture of Ba2Ti9O20, BaTi4O9, and TiO2. Further heat treatment at 1390 °C led to 96 vol% phase-pure Ba2Ti9O20 from an initial mixture devoid of any dopant. Heat treatment at rates decreasing to 5 °C/min facilitated agglomeration of TiO2. This, in turn, increased the diffusion distance required for reaction of BaTi4O9 and TiO2 to form Ba2Ti9O20.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Desu, S. B. and O'Bryan, H. M., J. Am. Ceram. Soc. 68 (10), 546 (1985).CrossRefGoogle Scholar
2.Moulson, A. J. and Herbert, J. M., Electroceramics: Materials, Properties, and Applications (Chapman and Hall, New York, 1990).Google Scholar
3.Kirby, K.W. and Wechsler, B.A., J. Am. Ceram. Soc. 74 (8), 1841 (1991).CrossRefGoogle Scholar
4.Jonker, G.H. and Kwestroo, W., J. Am. Ceram. Soc. 41 (10), 390 (1958).CrossRefGoogle Scholar
5.Wu, J-M. and Wang, H-W., J. Am. Ceram. Soc. 71 (10), 869 (1988).CrossRefGoogle Scholar
6.O'Bryan, H.M., Thomson, J., and Plourde, J.K., J. Am. Ceram. Soc. 57 (1), 450 (1974).CrossRefGoogle Scholar
7.O'Bryan, H.M. and Thomson, J., J. Am. Ceram. Soc. 57 (12), 522 (1974).CrossRefGoogle Scholar
8.O'Bryan, H.M. and Thomson, J., J. Am. Ceram. Soc. 66 (1), 1 (1983).CrossRefGoogle Scholar
9.Ritter, J. J., Roth, R.S., and Blendell, J. E., J. Am. Ceram. Soc. 69, 155 (1986).CrossRefGoogle Scholar
10.Hirano, S. and Naka, S., Japanese patent JP6221758A2 [87/217158] January (1987);Google Scholar
Hirano, S. et al., in Advances in Ceramics, edited by Blum, J.B. and Cannon, W.R. (The American Ceramics Society, Westerville, OH, 1986), Vol. 19, p. 139.Google Scholar
11.Yoon, K.H., Kim, J. B., Kim, W. S., and Kim, E.S., J. Mater. Res. 11, 1996 (1996).CrossRefGoogle Scholar
12.Yu, J., Zhao, H., Wang, J., and Xia, F., J. Am. Ceram. Soc. 77 (4), 1052 (1994).CrossRefGoogle Scholar
13.Lin, W-Y., Gerhardt, R.A., Hsu, J. Y., and Speyer, R. F., J. Mater. Sci. (1999, in press).Google Scholar
14.Hackenberger, W. and Speyer, R.F., Rev. Sci. Instrum. 65 (3), 701 (1994).CrossRefGoogle Scholar
15.Reed, J. S., Introduction to the Principles of Ceramic Processing (John Wiley and Sons, New York, 1988).Google Scholar