Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T04:07:12.220Z Has data issue: false hasContentIssue false

Examination of the impact of electron–phonon coupling on fission enhanced diffusion in uranium dioxide using classical molecular dynamics

Published online by Cambridge University Press:  10 February 2015

Jonathan L. Wormald
Affiliation:
Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
Ayman I. Hawari*
Affiliation:
Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Fission energy deposition in nuclear fuel has been experimentally observed to influence diffusion in uranium dioxide (UO2). This deposition is initially dominated by inelastic interactions with the electronic structure. Subsequently, energy is transferred to the lattice through electron–phonon (e–p) coupling resulting in a thermal spike and an associated pressure spike, which are presumed to contribute to diffusion enhancement. Molecular dynamics (MD) simulations were performed to investigate uranium diffusion enhancement in UO2 while varying the e–p coupling. The model was composed of 10 × 60 × 60 unit cells and used a Buckingham potential. A two-temperature model captured energy deposition in the electronic subsystem and its transfer to the atomic lattice. Experimentally, the fission enhanced diffusion coefficient (D*) of uranium in UO2 is observed to be athermal and proportional to fission rate density. For fission rate densities that are reported in experiment, the MD predicted D* was found to be on the order of 10−18 cm2/s, in reasonable agreement with experimental trends, and to decrease as e–p coupling was weakened.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Joel Ribis

References

REFERENCES

Matzke, Hj.: Radiation effects in nuclear fuel. In Radiation Effects in Solids, Sickafus, K.E., Kotomin, E.A., and Uberuaga, B.P. eds.; Springer: Berlin, Germany, 2007; pp. 401420.CrossRefGoogle Scholar
Matzke, Hj.: Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels. Radiat. Eff. 64, 3 (1982).CrossRefGoogle Scholar
Kirihara, T., Nakae, N., Matsui, H., and Tamaki, M.: Fission dependence of the lattice parameter change in fuel elements. In Plutonium and Other Actinides, North Holland Publishing Co.: Amsterdam, 1976; pp. 903–193.Google Scholar
Tamaki, M., Ohnuki, A., Matsui, H., Matsumoto, G., and Kirihara, T.: Variation in magnetic ordering of UN by neutron irradiation. Physica B+C 102, 258 (1980).CrossRefGoogle Scholar
Matsui, H., Horiki, M., and Kirihara, T.: Irradiation of uranium carbides in JMTR. J. Nucl. Sci. Technol. 18, 922 (1981).CrossRefGoogle Scholar
Matzke, Hj., Lucuta, P.G., and Wiss, T.: Swift heavy ion and fission damage effects in UO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 920 (2000).CrossRefGoogle Scholar
Rochi, C. and Wiss, T.: Fission-fragment spikes in uranium dioxide. J. Appl. Phys. 92, 5837 (2002).CrossRefGoogle Scholar
Rochi, C.: The nature of surface fission tracks in UO2 . J. Appl. Phys. 44, 3575 (1973).CrossRefGoogle Scholar
Wiss, T., Matzke, Hj., Trautman, C., Toulemonde, M., and Klaummünzer, S.: Radiation damage in UO2 by swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 583 (1997).CrossRefGoogle Scholar
Ruello, P., Becker, K.D., Ullrich, K., Desgranges, L., Petot, C., and Petot-Ervas, G.: Thermal variation of the optical absorption of UO2: Determination of the small polaron self-energy. J. Nucl. Mater. 328, 46 (2004).CrossRefGoogle Scholar
Momin, A.C., Mirz, E.B., and Mathews, M.D.: High temperature X-ray diffractometric studies on the lattice thermal expansion behavior of UO2, ThO2, and (U0.2Th0.8)O2 doped with fission product oxides. J. Nucl. Mater. 185, 308 (1991).CrossRefGoogle Scholar
Höh, A. and Matzke, Hj.: Fission-enhanced self-diffusion of uranium in UO2 and UC. J. Nucl. Mater. 48, 157 (1973).CrossRefGoogle Scholar
Matzke, Hj.: Radiation enhanced diffusion in UO2 and (U,Pu)O2 . Radiat. Eff. 75, 317 (1983).CrossRefGoogle Scholar
Brucklacher, D. and Dienst, W.: Creep behavior of ceramic fuels under neutron irradiation. J. Nucl. Mater. 42, 285 (1972).CrossRefGoogle Scholar
Dienst, W.: Irradiation induced creep of ceramic nuclear fuel. J. Nucl. Mater. 65, 1 (1977).CrossRefGoogle Scholar
Matzke, Hj.: Diffusion processes in nuclear fuels. J. Less-Common Met. 121, 537 (1986).Google Scholar
Béred, N., Chevarier, A., Moncoffre, N., Sainsot, Ph., Faust, H., and Catalette, H.: Fission enhanced diffusion of uranium in zirconia. Nucl. Instrum. Methods Phys. Res., Sect. B 240, 711 (2005).CrossRefGoogle Scholar
Arai, Y., Suzuki, Y., Iwai, T., and Ohmichi, T.: Dependence of the thermal conductivity of (U,Pu)N on porosity and plutonium content. J. Nucl. Mater. 195, 37 (1992).CrossRefGoogle Scholar
De Coninck, R., Van Lierde, W., and Gijs, A.: Uranium carbide: Thermal diffusivity, thermal conductivity and spectral emissivity at high temperatures. J. Nucl. Mater. 57, 69 (1975).CrossRefGoogle Scholar
Fink, J.K.: Thermophysical properties of uranium dioxide. J. Nucl. Mater. 279, 1 (2000).CrossRefGoogle Scholar
Leclercq, B., Mévrel, R., Liedtke, V., and Hohenauer, W.: Thermal conductivity of zirconia-based ceramics for thermal barrier coating. Materialwiss. Werkstofftech. 33, 406 (2003).CrossRefGoogle Scholar
Chang, J.P., Lin, Y., and Chu, K.: Rapid thermal chemical vapor deposition of zirconium oxide for metal-oxide-semiconductor field effect transistor application. J. Vac. Sci. Technol., B 19, 1782 (2001).CrossRefGoogle Scholar
Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Perdew, J.P., Burke, K., and Ernzerhof, M.: Erratum: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997).CrossRefGoogle Scholar
Nishio, K., Yamamoto, H., Kanno, I., Kimura, I., and Nakagomeb, Y.: A system for correlation measurement of fission fragment and prompt neutrons for thermal neutron induced fission. Nucl. Instrum. Methods Phys. Res., Sect. A 385, 171 (1990).CrossRefGoogle Scholar
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM: The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).CrossRefGoogle Scholar
Lifshitz, I.M., Kaganov, M.I., and Taratanov, L.V.: On the theory of radiation-induced changes in metals. J. Nucl. Energy, Part A 12, 69 (1960).Google Scholar
Toulemonde, M., Paumier, E., and Dufour, C.: Thermal spike model in the electronic stopping power regime. Radiat. Eff. Defects Solids 126, 201 (1993).CrossRefGoogle Scholar
Toulemonde, M., Dufour, Ch., Meftah, A., and Paumier, E.: Transient thermal process in heavy ion irradiation of crystalline inorganic insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 903 (2000).CrossRefGoogle Scholar
Osmani, O., Medvedev, N., Schleberger, M., and Rethfeld, B.: Energy dissipation in dielectrics after swift heavy-ion impact: A hybrid model. Phys. Rev. B 84, 214105 (2011).CrossRefGoogle Scholar
Avasthi, D.K. and Metha, G.K.: Swift Heavy Ions for Materials Engineering and Nanostructuring (Capital Publishing Company, Springer, New Delhi, India, 2011).CrossRefGoogle Scholar
Caro, A. and Victoria, M.: Ion-electron interaction in molecular dynamics cascades. Phys. Rev. B 40, 2287 (1989).CrossRefGoogle ScholarPubMed
Duffy, D.M. and Rutherford, A.M.: Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations. J. Phys.: Condens. Matter 19, 016207 (2007).Google Scholar
Duffy, D.M., Daraszewicz, S.L., and Mulroue, J.: Modelling the effects of electronic excitations in ionic-covalent materials. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 21 (2012).CrossRefGoogle Scholar
Daraszewicz, S.L. and Duffy, D.M.: Extending the inelastic thermal spike model for semiconductors and insulators. Nucl. Instrum. Methods Phys. Res., Sect. B 260, 1646 (2011).CrossRefGoogle Scholar
Klaumünzer, S.: Thermal-spike models for ion track physics: A critical examination. Mat.-Fys. Medd. 52, 263 (2006).Google Scholar
Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., Studer, F., and Trautman, C.: Experimental phenomena and thermal spike model description of ion tracks in amorphisable inorganic insulators. Mat.-Fys. Medd. 52, 263 (2006).Google Scholar
Wang, Z.G., Dufour, Ch., Paumier, E., and Toulemonde, M.: The Se sensitivity of metals under swift-heavy-ion irradiation: A transient thermal process. J. Phys.: Condens. Matter 6, 6733 (1994).Google Scholar
Duffy, D.M., Itoh, N., Rutherford, A.M., and Stoneham, A.M.: Making tracks in metals. J. Phys.: Condens. Matter 20, 082201 (2008).Google Scholar
Backman, M., Toulemonde, M., Pakarinen, O.H., Juslin, N., Djurabekova, F., Nordlund, K., Debelle, A., and Weber, W.J.: Molecular dynamics simulations of swift heavy ion induced defect recovery in SiC. Comput. Mater. Sci. 67, 261 (2013).CrossRefGoogle Scholar
Huang, M., Schwen, D., and Averback, R.S.: Molecular dynamic simulation of fission fragment induced thermal spikes in UO2: Sputtering and bubble re-solution. J. Nucl. Mater. 399, 175 (2010).CrossRefGoogle Scholar
Waligorski, M.R.P., Hamm, R.N., and Katz, R.: The radial distribution of dose around the path of a heavy ion in liquid water. Nucl. Tracks Meas. 11, 309 (1986).CrossRefGoogle Scholar
Allen, P.B.: Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59, 1460 (1987).CrossRefGoogle ScholarPubMed
Harp, J.M.: Examination of noble fission gas diffusion in uranium dioxide using atomistic simulation. Ph.D. thesis, North Carolina State University, NC, 2010.Google Scholar
Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Plimpton, S.J., Pollock, R., and Stevens, M.: Particle-mesh Ewald and rRESPA for parallel molecular dynamics simulation. In Proceedings of the Eight SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN (1997).Google Scholar
Pakarinen, J., He, L., Gupta, M., Gan, J., Nelson, A., El-Azab, A., and Allen, T.R.: 2.6 MeV proton irradiation effects on the surface integrity of depleted UO2 . Nucl. Instrum. Methods Phys. Res., Sect. B 319, 100 (2014).CrossRefGoogle Scholar
He, L.F., Pakarinen, J., Gan, J., Nelson, A.T., Bai, X-M., El-Azab, A., and Allen, T.R.: Microstructure evolution in Xe-irradiated UO2 at room temperature. Nucl. Instrum. Methods Phys. Res., Sect. B 330, 55 (2014).CrossRefGoogle Scholar
Matzke, Hj.: On uranium self-diffusion in UO2 and UO2+x . J. Nucl. Mater. 30, 26 (1986).CrossRefGoogle Scholar
Lindner, R. and Schmitz, F.: Diffusion of uranium 233 in uranium oxide. Naturforscher 169, 1373 (1961).CrossRefGoogle Scholar
Sabioni, A.C.S., Ferraz, W.B., and Millot, F.: First study of uranium self-diffusion in UO2 by SIMS. J. Nucl. Mater. 257, 180 (1998).CrossRefGoogle Scholar