Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T01:34:49.907Z Has data issue: false hasContentIssue false

Enhanced yield strength in iron nanocomposite with in situ grown single-wall carbon nanotubes

Published online by Cambridge University Press:  01 February 2006

A. Goyal
Affiliation:
Otto H. York Department of Chemical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102
D.A. Wiegand
Affiliation:
Armament Research, Development and Engineering Center, Picatinny, New Jersey 07806
F.J. Owens
Affiliation:
Armament Research, Development and Engineering Center, Picatinny, New Jersey 07806
Z. Iqbal*
Affiliation:
Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The yield strength of iron-carbon nanotube composites fabricated by in situ chemical vapor deposition of 2.2 vol% single-wall carbon nanotubes (SWNTs) inside an iron matrix showed substantial enhancement up to 45%, relative to that of similarly treated pure iron samples without carbon nanotubes of the same piece density. The work hardening coefficient and the Vickers hardness coefficient also significantly increased in these composites relative to the reference samples. X-ray diffraction together with energy dispersive x-ray measurements and micro-Raman spectroscopy indicated no concomitant formation of carbides and very little amorphous carbon during the vapor deposition process. Micro-Raman spectroscopy and scanning and transmission electron microscopy showed spectral signatures and images, respectively, indicating the formation and dispersion of SWNTs within the cavities of the iron matrix. It is suggested that the increased strength of the nanocomposites was due to the mechanical support provided to these cavities by the extremely strong SWNTs.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Curtin, W.A. and Sheldon, B.W.: CNT-reinforced ceramics and metals. Mater. Today 7, 44 (2004).CrossRefGoogle Scholar
2.Iqbal, Z. and Goyal, A. Carbon nanotubes/nanofibers and carbon fibers in, Functional Fillers for Plastics, edited by Xanthos, M. (WILEY-VCH Verlag, Berlin, Germany, 2005), p. 175.CrossRefGoogle Scholar
3.Van Lier, G., Van Alsenoy, C., Van Doren, V. and Geerlings, P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326, 181 (2000).CrossRefGoogle Scholar
4.Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejon, P.: Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phy. Rev. B 59, 12678 (1999).CrossRefGoogle Scholar
5.Hernandez, E., Goze, C., Bernier, P. and Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1998).CrossRefGoogle Scholar
6.Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297 (1997).CrossRefGoogle Scholar
7.Yakobson, B.I., Campbell, M.P., Brabec, C.J. and Bernohlc, J.: High strain rate fracture and C-chain unraveling in carbon nanotubes. Comp. Mater. Sci. 8, 341 (1997).CrossRefGoogle Scholar
8.Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (2002).CrossRefGoogle Scholar
9.Wong, E.W., Sheehan, P.E. and Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997).CrossRefGoogle Scholar
10.Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forró, L., Benoit, W. and Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. A 69, 255 (1999).CrossRefGoogle Scholar
11.Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013 (1998).CrossRefGoogle Scholar
12.Flahaut, E., Peigney, A., Laurent, Ch., Marlière, Ch., Chastel, F. and Rousset, A.: Carbon nanotube metal-oxide-nanocomposites: Microstructure, electrical conductivity and mechanical properties. Acta Mater. 48, 3803 (2000).CrossRefGoogle Scholar
13.Siegel, R.W., Chang, S.K., Ash, B.J., Stone, J., Ajayan, P.M., Doremus, R.W. and Schadler, L.S.: Mechanical behavior of polymer and ceramic matrix nanocomposites. Scripta Mater. 44, 2061 (2001).CrossRefGoogle Scholar
14.An, J-W., You, D-H. and Lim, D-S.: Tribological properties of hot-pressed alumina–CNT composites. Wear 255, 677 (2003).CrossRefGoogle Scholar
15.Balázsi, C.S., Kónya, Z., Wéber, F., Biró, L.P. and Arató, P.: Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Mater. Sci. Eng. C 23, 1133 (2003).CrossRefGoogle Scholar
16.Zhan, G-D., Kuntz, J.D., Wan, J. and Mukherjee, A.K.: Single-wall carbon nanotubes as attractive toughening agents in alumina based composites. Nat. Mater. 2, 38 (2003).CrossRefGoogle Scholar
17.Zhan, G-D., Kuntz, J.D., Garay, J.E. and Mukherjee, A.K.: Electrical properties of nanoceramics reinforced with ropes of single wall carbon nanotubes. Appl. Phys. Lett. 83, 1228 (2003).CrossRefGoogle Scholar
18.Wang, X-T., Padture, N.P. and Tanaka, H.: Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat. Mater. 3, 539 (2004).CrossRefGoogle ScholarPubMed
19.Kuzumaki, T., Miyazawa, K., Ichinose, H. and Ito, K.: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13, 2445 (1998).CrossRefGoogle Scholar
20.Yang, J. and Schaller, R.: Mechanical spectroscopy of Mg reinforced with Al2O3 short fibers and C nanotubes. Mater. Sci. Eng. A 370, 512 (2004).CrossRefGoogle Scholar
21.Flahaut, E., Peigney, A., Laurent, Ch., Marlière, Ch., Chastel, F. and Rousset, A.: Carbon nanotube-metal-oxide nanocomposite: Microsturcture, electrical conductivity and mechanical properties. Acta Mater. 48, 3803 (2000).CrossRefGoogle Scholar
22.Laub, D.: The tripod method to prepare cross-sectional TEM specimen based on the method of Anderson, Benedict and Klepies (Lab Manual EPFL-CIME, 1015 Lausanne Switzerland).Google Scholar
23.Wiegand, D.A., Pinto, J. and Nicolaides, S.J.: Mechanical response of TNT and a composite (Composition B) of TNT and RDX to compressive stress: I. Uniaxial stress and fracture. Energetic Mater. 9, 19 (1991).CrossRefGoogle Scholar
24.Rao, A.M., Richter, E., Bandow, S., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G. and Dresselhaus, M.S.: Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187 (1997).CrossRefGoogle ScholarPubMed
25.Cao, P.G., Yao, J.L., Zheng, J.W., Ren, B., Gu, A.R. and Tian, Z.Q. Two-dimensional surface Raman imaging of a roughened iron electrode in saline water, in Progress in Surface Raman Spectroscopy, edited by Tian, Z.Q., and Ren, B., (Xiamen University Press, Fujian, China, 2000), p. 75.Google Scholar
26.Alvarez, L., Righi, A., Rols, S., Anglaret, A., Suavajol, J.L., Muñoz, E., Maser, W.K., Benito, A.M., Martínez, M.T. and de Faunte, G.F. la: Diameter dependence of Raman intensities for single-wall carbon nanotubes. Phys. Rev. B 63, 153401 (2001).CrossRefGoogle Scholar
27.Callister, W.D. Jr.: Materials Science and Engineering: An Introduction, 6th ed. (John Wiley and Sons, New York, 2003), pp. 111134.Google Scholar
28.Cassell, A.M., Franklin, N.R., Tombler, T.W., Chan, E.M., Han, J. and Dai, H.: Directed growth of free standing single-walled carbon nanotubes. J. Am. Chem. Soc. 121, 7975 (1999).CrossRefGoogle Scholar
29.Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D. and Dai, H.: Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105, 11424 (2001).CrossRefGoogle Scholar
30.Wang, J.C.: Young’s modulus of porous materials. Part 1 Theoretical derivation of modulus-porosity correlation. J. Mater. Sci. 19, 801 (1984).CrossRefGoogle Scholar
31.Knudsen, F.P.: Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. J. Am. Chem. Soc. 42, 376 (1959).Google Scholar
32.Rice, R.W. Microstructure dependence of mechanical behavior of ceramics, in Treatise on Materials Science and Technology, Vol. 2, edited by MacCrone, R.K. (Academic Press, New York, 1977), p. 199.Google Scholar
33.Pisrenko, G.S., Troshchenko, V.T. and Krasovskii, A.Ya. Study of the mechanical properties of porous iron, in Persepctives in Powder Metallurgy, Vol. 3, edited by Hausner, H.H., Roll, K.H., and Johnson, P.K. (Plenum Press, New York, 1968).Google Scholar